Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 204 - 204
1 Sep 2012
Zietz C Fritsche A Mittelmeier W Bader R
Full Access

The prevalent cause of implant failure after total joint replacement is aseptic loosening caused by wear debris. Improvement of the wear behaviour of the articulating bearing between the cup and femoral head is essential for increased survival rate of artificial hip joints. Cross-linking of the polyethylene (PE) material is one attempt to reduce wear particle release at the articulating surface. Various cross-linked polyethylenes (X-PE) are used in orthopaedics since several years. In total hip arthroplasty (THA) the use of larger femoral head sizes has specific reasons. Larger heads lead to a decreased risk of total hip dislocation and impingement as well as an improved range of motion in comparison to smaller head sizes like 28mm or less. However, the increasing diameter of femoral head can be associated with lower thickness of the PE liner and increased wear rate. Cross-linking of PE can improve the wear rate of the liner and hence supports the use of larger femoral heads. The aim of this experimental study was to evaluate the wear of standard vs. sequential X-PE (X3-PE) liner in combination with different ceramic femoral head sizes. Wear testing was performed for 5 million load cycles using standard UHMW-PE liners (N2Vac) and X3-PE liners (each Stryker GmbH & Co. KG, Duisburg, Germany) combined with 28mm ceramic ball heads and the Trident PSL acetabular cup (Stryker). Furthermore, X3-PE liners with an internal diameter of 36mm and 44mm and decreased wall thickness (5.9mm and 3.8mm) were combined with corresponding ceramic heads. An eight station hip wear simulator according to ISO 14242 (EndoLab GmbH, Rosenheim, Germany) was used to carry out the standard wear tests. The tests were realised in temperature-controlled chambers at 37°C containing calf serum (protein content 20g/l). The average gravimetrical wear rates of the standard UHMW-PE (N2Vac) liners combined with 28mm ceramic heads amounted to 12.6 ± 0.8mg/million cycles. Wear of X3-PE liners in combination with 28 mm ceramic heads was not detectable. The average gravimetrical wear rates of the X3-PE liners in combination with 36mm and 44mm ceramic heads amounted to 2.0 ± 0.5mg and 3.1 ± 0.3mg/million cycles, respectively. The purpose of this study was to evaluate the effect of femoral head size at THA on standard and sequential X-PE liner. The wear simulator tests showed that the wear rate of PE liners with small heads (28mm) decreased by cross-linking of the PE significantly. The amount of wear at X-PE increased slightly with larger head size (36mm and 44mm). However, by sequential cross-linking, the wear rate using thinner liners and larger femoral heads is reduced to a fractional amount of wear at conventional UHMW-PE. Hence, the above-mentioned advantages of larger femoral head diameters can be realised by improved wear behaviour of sequential X-PE


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 142 - 142
1 Sep 2012
Traynor A Simpson D Ellison P Collins S
Full Access

Introduction. Cobalt chrome on polyethylene remains a widely used bearing combination in total joint replacement. However wear induced osteolysis, bulk material property degradation of highly cross-linked polyethylene (HXLPE) [1], and oxidation after implantation (thought to be as a result of lipid absorption or cyclic loading [2]) remains a concern. ECIMA is a cold-irradiated, mechanically annealed, vitamin E blended next generation HXLPE developed to maintain mechanical properties, minimise wear and to improve the oxidation resistance in the long-term. The aim of this study was to compare the in-vitro wear rate and mechanical properties of three different acetabular liners; conventional UHMWPE, HXLPE and ECIMA. Methods. Twelve liners (Corin, UK) underwent a 3 million cycle (mc) hip simulation. Three conventional UHMWPE liners (GUR1050, Ø32 mm, 30 kGy sterilised in Nitrogen), three HXLPE liners (GUR1020, Ø40 mm, 75 kGy cross-linking and EtO sterilised) and six ECIMA liners (0.1 wt% vitamin E GUR1020, Ø40 mm, 120 kGy cross-linking, mechanically deformed and annealed, and EtO sterilised) articulated against CoCrMo alloy femoral heads to ASTM F75 (Corin, UK). Wear testing was performed in accordance with ISO 14242 parts 1 and 2, with a maximum force of 3.0 kN and at a frequency of 1 Hz. The test lubricant used was calf serum with a protein content of 30 g/l and 1% (v/v) patricin added as an antibacterial agent. Volumetric wear rate was determined gravimetrically after the first 0.5 mc and every 1 mc thereafter. ASTM D638 type V specimens (3.2 mm thick) were machined from ECIMA material for uniaxial tension testing to ASTM D638. Ultimate tensile strength (UTS), yield strength and elongation values were measured. These values were compared to mechanical data available for the other material types. Results. There was a 94% and a 68% reduction in the wear rate for the ECIMA liners compared to the conventional UHMWPE and HXLPE liners respectively. There was an increase in UTS, yield strength and elongation of 11%, 11% and 15% respectively, for ECIMA compared to HXLPE. Discussion. The wear results reported in this study indicate that ECIMA is a very low wearing material which has the potential to reduce wear related osteolysis in-vivo. Importantly, the mechanical properties were generally maintained unlike the degradation found in many modified polyethylene materials and were more comparable to conventional UHMWPE than HXLPE. The reduced wear rate during in-vitro hip simulation of ECIMA compared to conventional UHMWPE, coupled with improved mechanical properties in comparison to HXLPE, makes ECIMA a promising next generation, advanced bearing material


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 232 - 232
1 Sep 2012
Beck M Kohl S
Full Access

INTRODUCTION. The lifetime of UHMWPE implants may be limited by wear and oxidative degeneration. Wear produced particles are in general biologically active, and may induce osteolysis. As threshold of PE wear rate below which osteolysis is rarely observed is postulated to be less tahn 0.1 mm per year. Moreover, PE delamination and breakage are consequences of the embrittlement of the PE due to oxidation. Both demonstrate, that improving the clinical behaviour of UHMWPE means reduction of wear particles. The first can be achieved by cross-linking the second by the anti-oxidative stabiliser vitamin E. The highly cross-linked PE vitamys ® used for the isoelastic monobloc cup RM Pressfit (Mathys AG Bettlach, Bettlach, Switzerland) is mixed with 0.1% of synthetic vitamin E and is the first and only highly cross-linked PE used in total hip replacement that meets all requirements for the best grade UHMWPE in yield strength, ultimate tensile strength and elongation at break. METHODS AND MATERIAL. With the first implantation of RM Pressfit vitamys® a prospective multicentre study was started. So far 256 cases in 7 clinics from Europe and New Zealand are included. This report presents the first clinical experiences of one Swiss clinic from the multicentre study. Prospective data collection includes Harris Hip score (HHS), patient satisfaction and radiographic analysis. Clinical and radiographic follow-up is done after 6 weeks, 6, 12 and 24 months, and thereafter for long-term results. Standardized documentation of surgery and postoperative course is performed. RESULTS. 81 patients were included in the study. Mean age at implantation is 69 years. The indication was primary OA in 57% and secondary OA in 36%, the others were treated either for necrosis, fracture or hip dysplasia. 68% of the patients received a 36mm femoral head, 31% a 32mm and 1% a 28mm. Intraoperatively two minor complications occurred, one femur and one trochanter fissure. No complications occurred during implantation of the cup. Most of the cups (59%) were implanted with an inclination of 40°-50°, 30% with 35°-40°. There were no signs of early loosening and a good Harris Hip Score was achieved. DISCUSSION. The principals of this monobloc cup with its isoelastic property and the thin titanium coating is a proven concept. Ihle et al. (JBJS 2008) reported 91% survival rate with revision for aseptic loosening as endpoint after 20 years. They found an increase of cup revisions after 14 to 16 years after implantation due to osteolysis probably due to PE wear. At short term, we haven't encountered any problems related to the implantation of this cup. So far one patient in the entire multicentre study needed a stem revision after periprosthetic femur fracture. To prove the durability of this novel material a follow-up of 14 years and more will be required


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1063 - 1069
1 Jun 2021
Amundsen A Brorson S Olsen BS Rasmussen JV

Aims

There is no consensus on the treatment of proximal humeral fractures. Hemiarthroplasty has been widely used in patients when non-surgical treatment is not possible. There is, despite extensive use, limited information about the long-term outcome. Our primary aim was to report ten-year patient-reported outcome after hemiarthroplasty for acute proximal humeral fractures. The secondary aims were to report the cumulative revision rate and risk factors for an inferior patient-reported outcome.

Methods

We obtained data on 1,371 hemiarthroplasties for acute proximal humeral fractures from the Danish Shoulder Arthroplasty Registry between 2006 and 2010. Of these, 549 patients (40%) were alive and available for follow-up. The Western Ontario Osteoarthritis of the Shoulder (WOOS) questionnaire was sent to all patients at nine to 14 years after primary surgery. Revision rates were calculated using the Kaplan-Meier method. Risk factors for an inferior WOOS score were analyzed using the linear regression model.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 144 - 153
1 Mar 2017
Kharwadkar N Mayne B Lawrence JE Khanduja V

Objectives

Bisphosphonates are widely used as first-line treatment for primary and secondary prevention of fragility fractures. Whilst they have proved effective in this role, there is growing concern over their long-term use, with much evidence linking bisphosphonate-related suppression of bone remodelling to an increased risk of atypical subtrochanteric fractures of the femur (AFFs). The objective of this article is to review this evidence, while presenting the current available strategies for the management of AFFs.

Methods

We present an evaluation of current literature relating to the pathogenesis and treatment of AFFs in the context of bisphosphonate use.