Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 136 - 136
1 Apr 2019
Meynen A Verhaegen F Debeer P Scheys L
Full Access

Background. Degeneration of the shoulder joint is a frequent problem. There are two main types of shoulder degeneration: Osteoarthritis and cuff tear arthropathy (CTA) which is characterized by a large rotator cuff tear and progressive articular damage. It is largely unknown why only some patients with large rotator cuff tears develop CTA. In this project, we investigated CT data from ‘healthy’ persons and patients with CTA with the help of 3D imaging technology and statistical shape models (SSM). We tried to define a native scapular anatomy that predesignate patients to develop CTA. Methods. Statistical shape modeling and reconstruction:. A collection of 110 CT images from patients without glenohumeral arthropathy or large cuff tears was segmented and meshed uniformly to construct a SSM. Point-to-point correspondence between the shapes in the dataset was obtained using non-rigid template registration. Principal component analysis was used to obtain the mean shape and shape variation of the scapula model. Bias towards the template shape was minimized by repeating the non-rigid template registration with the resulting mean shape of the first iteration. Eighty-six CT images from patients with different severities of CTA were analyzed by an experienced shoulder surgeon and classified. CT images were segmented and inspected for signs of glenoid erosion. Remaining healthy parts of the eroded scapulae were partitioned and used as input of the iterative reconstruction algorithm. During an iteration of this algorithm, 30 shape components of the shape model are optimized and the reconstructed shape is aligned with the healthy parts. The algorithm stops when convergence is reached. Measurements. Automatic 3D measurements were performed for both the healthy and reconstructed shapes, including glenoid version, inclination, offset and critical shoulder angle. These measurements were manually performed on the mean shape of the shape model by a surgeon, after which the point-to-point correspondence was used to transfer the measurements to each shape. Results. The critical shoulder angle was found to be significantly larger for the CTA scapulae compared to the references (P<0.01). When analyzing the classified scapulae significant differences were found for the version angle in the scapulae of group 4a/4b and the critical shoulder angle of group 3 when compared to the references (P<0.05). Conclusion. Patients with CTA have a larger critical shoulder angle compared with reference patients. Some significant differences are found between the scapulae from patients in different stages of CTA and healthy references, however the differences are smaller than the accuracy of the SSM reconstruction. Therefore, we are unable to conclude that there is a predisposing anatomy in terms of glenoid version, inclination or offset for CTA


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 52 - 52
1 Apr 2019
Knowles NK Raniga S West E Ferreira L Athwal G
Full Access

Introduction. The Walch Type B2 glenoid has the hallmark features of posteroinferior glenoid erosion, retroversion, and posterior humeral head subluxation. Although our understanding of the pathoanatomy of bone loss and its evolution in Type B's has improved, the etiology remains unclear. Furthermore, the morphology of the humerus in Walch B types has not been studied. The purpose of this imaging based anthropometric study was to examine the humeral torsion in Walch Type B2 shoulders. We hypothesized that there would be a compensatory decrease in humeral retroversion in Walch B2 glenoids. Methods. Three-dimensional models of the full length humerus were generated from computed tomography data of normal cadaveric (n = 59) and Walch Type B shoulders (n = 59). An anatomical coordinate system referencing the medial and lateral epicondyles was created for each model. A simulated humeral head osteotomy plane was created and used to determine humeral version relative to the epicondylar axis and the head-neck angle. Measurements were repeated by two experienced fellowship-trained shoulder surgeons to determine inter-rater reliability. Glenoid parameters (version, inclination and 2D critical shoulder angle) and posterior humeral head subluxation were calculated in the Type B group to determine the pathologic glenohumeral relationship. Two-way ANOVAs compared group and sex within humeral version and head-neck angle, and intra-class correlation coefficients (ICCs) with a 2-way random effects model and absolute agreement were used for inter-rater reliability. Results. There were statistically significant differences in humeral version between normal and Type B shoulders (p < .001) and between males and females within the normal group (p = .043). Normal shoulders had a humeral retroversion of 36±12°, while the Walch Type B group had a humeral retroversion of 14±9° relative to the epicondylar axis. For head-neck angle, there were no significant differences between sexes (p = .854), or between normal and Type B shoulders when grouped by sex (p = .433). In the Type B group, the mean glenoid version was 22±7°, glenoid inclination was 8±6°, 2D critical shoulder angle was 30±5° and humeral head subluxation was 80±9%. Inter-rater reliability showed fair agreement between the two experienced observers for head-neck angle (ICC = .562; 95% CI: -.28 to .809) and excellent agreement for humeral version (ICC = .962;.913 to .983). Although only fair agreement was found between observers in head-neck angle ICC, the difference in mean angle was only 2°. Discussion. Although much time and effort has been spent understanding and managing Type B2 glenoids, little attention has been paid to investigating associated humeral contributions to the Type B shoulder. Our results indicate that the humeral retroversion in Type B shoulders is significantly lower than in normals. These findings have several implications, including, helping to understanding the etiology of the B2, the unknown effects of arbitrarily selecting higher version angles for the humeral component, and the unknown effects of altered version on glenohumeral joint stability, loading and implant survivorship post-arthroplasty. Our results also raise an important question, whether it is best to reconstruct Type B humeral component version to pathologic version or to non-pathologic population means