Advertisement for orthosearch.org.uk
Results 1 - 20 of 92
Results per page:
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 8 - 8
1 Oct 2015
Mueller A Tew S Clegg P Canty-Laird E
Full Access

Introduction. The two-dimensional (2D) monolayer culture paradigm has limited translational potential to physiological systems; chondrocytes and tenocytes in monolayer lose expression of hallmarks of differentiated status (dedifferentiation). Qualitative assessment of three-dimensional (3D) cultures in musculoskeletal biology relative to native tissues has been limited. An understanding of prevailing gene regulatory networks is required to define whether 3D culture systems faithfully restitute the native tissue phenotype (redifferentiation). Using a systems biology approach to explore the gene networks associated with de- and re-differentiation may define targetable regulators associated with phenotypic plasticity of adult musculoskeletal cells. Materials and Methods. Global transcriptomic and proteomic profiling of matrix-depleted chondrocytes and tenocytes from the rat was performed for each of three conditions (native tissue, monolayer at passage three, or tissue-appropriate 3D cultures). Differential analysis of mRNA and protein abundance, gene ontology annotation, pathway topology impact analysis, and derivation of common mechanistic networks was undertaken to define consensus expression profiles, signalling pathways, and upstream regulators for de- and re-differentiation in each cell type. Results. Principal component analysis demonstrated a convergence of gene expression profiles in monolayer, including the expression of musculoskeletal progenitor markers scleraxis (Scx) and Mohawk (Mkx). Three-dimensional culture systems failed to demonstrate parity with native tissue and incited the expression of Il-6 and Ptgs2 (COX2). The CCN-family member Ctgf (CCN2), and the marker of skeletal differentiation Grem1 (gremlin 1), were consistently differentially abundant in de- and re-differentiation at both the mRNA and protein level. Pathway topology impact analysis defined PI-3K/Akt as the common signalling pathway in de- and re-differentiation. Discussion. Historically, the terms de- and re-differentiation have been used with no mechanistic definition. Additionally, there is no standardised phenotype for 3D cultures to benchmark novel progress in bioengineering. Consensus upstream regulators yielded a unified mechanistic network for chondrocyte and tenocyte phenotypes in three conditions. The PI-3K/Akt signalling pathway has been implicated in a range of physiological activities including dedifferentiation, proliferation, matrix synthesis, and cell survival. Pathway analysis suggests that the PI-3K/Akt signalling pathway may contribute to the de- and re-differentiation phenotypes for both chondrocytes and tenocytes and represents a rational target for further network-level analysis


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 119 - 119
1 Jul 2014
Razak A Ebinesan A Charalambous C
Full Access

Summary Statement. Routine metal allergy screening prior to joint arthroplasty is not essential and the use of cobalt chromium or stainless steel implants is recommended regardless of the patient's metal allergy status. Introduction. This study was undertaken to obtain a consensus amongst joint arthroplasty experts with regards to metal allergy screening prior to joint arthroplasty and the choice of implant in patients with potential metal allergy. Patients & Methods. A web based Delphi consensus study was used including orthopaedic surgeons that had previously published on the topic of knee, hip or shoulder arthroplasty. Two rounds of questionnaires were sent via electronic mail. Consensus was considered if agreement was 60% or higher. Results. 18 surgeons responded to the first and 17 to the second round of questionnaires. There was consensus that patients having metal arthroplasty surgery should not be routinely questioned about metal allergy prior to surgery. There was consensus that patch testing is not necessary even if metal allergy is suspected. Most respondents agreed in proceeding with cobalt chromium or stainless steel implant in patients suspected of metal allergy regardless of the results of cutaneous patch testing. Discussion/Conclusion. This consensus study suggests that routine metal allergy screening prior to joint arthroplasty is not essential. The use of traditional cobalt chromium/stainless steel implants is recommended regardless of the patient's metal allergy status


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 11 - 11
17 Nov 2023
Wahdan Q Solanke F Komperla S Edmonds C Amos L Yap RY Neal A Mallinder N Tomlinson JE Jayasuriya R
Full Access

Abstract. INTRODUCTION. In the NHS the structure of a “regular healthcare team” is no longer the case. The NHS is facing a workforce crisis where cross-covering of ward-based health professionals is at an all-time high, this includes nurses, doctors, therapists, pharmacists and clerks. Comprehensive post-operative care documentation is essential to maintain patient safety, reduce information clarification requests, delays in rehabilitation, treatment, and investigations. The value of complete surgical registry data is emerging, and in the UK this has recently become mandated, but the completeness of post-operative care documentation is not held to the same importance, and at present there is no published standard. This project summarises a 4-stage approach, including 6 audit cycles, >400 reviewed operation notes, over a 5 year period. OBJECTIVE. To deliver a sustainable change in post operative care documentation practices through quality improvement frameworks. METHODS. Stage 1: Characterise the problem and increase engagement through: SMART aims, process mapping, hybrid action-effect and driver diagram and stakeholder analysis. Multi disciplinary stakeholders were involved in achieving a consensus of evidence-based auditable criteria. Stage 2: Baseline audit to assess current practice. Stage 3: Intervention planning by stakeholders. Stage 4: Longitudinal monitoring through run charts and iterative refinement. RESULTS. Stage 1: Process mapping identified numerous downstream effects of the absence of critical information from operation notes, and the action-effect diagram highlighted the multiple unnecessary mitigating actions performed by ward staff. An MDT consensus was achieved on 15 essential criteria for complete documentation, including important negative fields. Interest-influence matrix identified stakeholder groups with high influence but low interest who needed engagement to deliver change. Stage 2: Baseline audit demonstrated unexpectedly poor documentation: >75% compliance in 4 criteria, and <50% compliance in 10 criteria, which elevated the interest of key stakeholders. Stage 3: A post-operative care template based on the 15 criteria was embedded within the existing IT software. It allowed use of existing operative templates, with a non-overwriting suffix requiring only two mouse clicks. Stage 4: Re-audit at 3 and 12 months showed improved and sustained compliance. At 24 months compliance had declined. Questionnaire of template usage identified problems of criteria response options, and lack of awareness of template by newly appointed staff. Template update improved compliance over the next 6 months (>75% compliance in 11 criteria). Finally, a further reaudit conducted 12 months after the template update (5 years post baseline audit) showed a sustained improvement in compliance (>75% compliance in 13 criteria). CONCLUSIONS. Simple innovation through quality improvement frameworks has changed documentation practices by 1) achieving a consensus from stakeholders, 2) a “shock and awe” moment to highlight existing poor documentation and increase engagement 3) implementing change which fit easily into existing systems, 4) respecting autonomy rather than enforcing change and 5) longitudinal monitoring using run charts and an iterative process to ensure the template remains fit for purpose. This model has now successfully been translated to other subspecialities within the orthopaedic department. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 32 - 32
1 Nov 2021
Amadio PC
Full Access

Carpal tunnel syndrome (CTS) is the most common condition affecting the hand, with a prevalence of 2–3% in most populations, and a lifetime incidence over 10%. There is consensus that CTS results from increased pressure in the carpal tunnel, which eventually affects nerve function, but, aside from direct trauma and space occupying lesions, there is no consensus on what causes the pressure to rise. In the absence of an identifiable biological mechanism, the most common treatment involves surgical opening of the carpal tunnel. Recent data suggests that CTS patients demonstrate, in the carpal tunnel synovium and subsynovial connective tissue (SSCT), evidence of cellular senescence, with a senescence associated secretory phenotype (SASP). This finding suggests the potential for a biological treatment for CTS with senolytic drugs. This presentation will review the evidence for CTS as a disease of cellular senescence, and our preliminary data on the effects of senolytics, including in a relevant animal model of CTS and SSCT fibrosis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 1 - 1
4 Apr 2023
Buldu M Sacchetti F Yasen A Furtado S Parisi V Gerrand C
Full Access

Primary malignant bone and soft tissue tumours often occur in the lower extremities of active individuals including children, teenagers and young adults. Survivors routinely face long-term physical disability. Participation in sports is particularly important for active young people but the impact of sarcoma treatment is not widely recognised and clinicians may be unable to provide objective advice about returning to sports. We aimed to identify and summarise the current evidence for involvement in sports following treatment of lower limb primary malignant bone and soft tissue tumours. A comprehensive search strategy was used to identify relevant studies combining the main concepts of interest: (1) Bone/Soft Tissue Tumour, (2) Lower Limb, (3) Surgical Interventions and (4) Sports. Studies were selected according to eligibility criteria with the consensus of three authors. Customised data extraction and quality assessment tools were used. 22 studies were selected, published between 1985 – 2020, and comprising 1005 patients. Fifteen studies with data on return to sports including 705 participants of which 412 (58.4%) returned to some form of sport at a mean follow-up period of 7.6 years. Four studies directly compared limb sparing and amputation; none of these were able to identify a difference in sports participation or ability. Return to sports is important for patients treated for musculoskeletal tumours, however, there is insufficient published research to provide good information and support for patients. Future prospective studies are needed to collect better pre and post-treatment data at multiple time intervals and validated clinical and patient sports participation outcomes such as type of sports participation, level and frequency and a validated sports specific outcome score, such as UCLA assessment. In particular, more comparison between limb sparing and amputation would be welcome


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 82 - 82
2 Jan 2024
Barcik J Ernst M Buchholz T Constant C Mys K Epari D Zeiter S Gueorguiev B Windolf M
Full Access

Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides mechanical stimulus that is required for the formation of fracture callus. In clinical settings, interfragmentary motion is induced by physiological loading of the broken bone – for example, by weight-bearing. However, there is no consensus about when mechanical stimuli should be applied to achieve fast and robust healing response. Therefore, this study aims to identify the effect of the immediate and delayed application of mechanical stimuli on secondary bone healing. A partial tibial osteotomy was created in twelve Swiss White Alpine sheep and stabilized using an active external fixator that induced well-controlled interfragmentary motion in form of a strain gradient. Animals were randomly assigned into two groups which mimicked early (immediate group) and late (delayed group) weight-bearing. The immediate group received daily stimulation (1000 cycles/day) from the first day post-op and the delayed group from the 22nd day post-op. Healing progression was evaluated by measurements of the stiffness of the repair tissue during mechanical stimulation and by quantifying callus area on weekly radiographs. At the end of the five weeks period, callus volume was measured on the post-mortem high-resolution computer tomography (HRCT) scan. Stiffness of the repair tissue (p<0.05) and callus progression (p<0.01) on weekly radiographs were significantly larger for the immediate group compared to the delayed group. The callus volume measured on the HRCT was nearly 3.2 times larger for the immediate group than for the delayed group (p<0.01). This study demonstrates that the absence of immediate mechanical stimuli delays callus formation, and that mechanical stimulation already applied in the early post-op phase promotes bone healing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 8 - 8
4 Apr 2023
Fridberg M Ghaffari A Husum H Rahbek O Kold S
Full Access

There is no consensus on how to evaluate and grade pin site infection. A precise, objective and reliable pin site infectious score is warranted. The literature was reviewed for pin site infection classification systems, The Modified Gordon Score (MGS) grade 0-6 was used. The aim was to test the reliability of The Modified Gordon Infection Score. The observed agreement and inter-rater reliability were investigated between nurse and doctors. MGS was performed in the outpatient clinic at Aalborg University Hospital, Denmark on 1472 pin sites in 119 patients by one nurse and one of three orthopaedic surgeons blinded to each other's judgement. The data was stored in a Red Cap Database for further statistical analysis. The observed agreement between the nurse and the 3 orthopaedic surgeons was evaluated with a one-way random-effect model with interclass correlation with absolute agreement. Furthermore the observed agreement for each of the 3 surgeons with the nurse was calculated. The distribution of MGS infection grade in the 1472 pin sites was: Grade 0; n=1372, Grade 1; n=32, Grade 2; n=39, Grade 3; n=24, Grade 4; n=5, Grade 5; n=0, Grade 6; n=0. The observed agreement between the nurse and the surgeons was calculated as 98%. The ICC estimated between nurse and the surgeons was 0,8943 (ICC >0,85 = reliable). The grading was done by three different doctors with an agreement with the nurse as follows. Rater1 (n=416) =99,5 %, Rater2 (n=1440) =97,4%, Rater3 (n=1440) =96,6%. A limitation to this study is that the dataset represents mostly clean pin sites with MGS 0. Only 100 pin sites had signs of superficial infection MGS 1-4 none above 4. We found that the MGS infection score is highly reliable for low grade infections but we cannot conclude on reliability in severe infections


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 38 - 38
1 Dec 2022
Tedesco G Evangelisti G Fusco E Ghermandi R Girolami M Pipola V Tedesco E Romoli S Fontanella M Brodano GB Gasbarrini A
Full Access

Neurological complications in oncological and degenerative spine surgery represent one of the most feared risks of these procedures. Multimodal intraoperative neurophysiological monitoring (IONM) mainly uses methods to detect changes in the patient's neurological status in a timely manner, thus allowing actions that can reverse neurological deficits before they become irreversible. The utopian goal of spinal surgery is the absence of neurological complications while the realistic goal is to optimize the responses to changes in neuromonitoring such that permanent deficits occur less frequently as possible. In 2014, an algorithm was proposed in response to changes in neuromonitoring for deformity corrections in spinal surgery. There are several studies that confirm the positive impact that a checklist has on care. The proposed checklist has been specifically designed for interventions on stable columns which is significantly different from oncological and degenerative surgery. The goal of this project is to provide a checklist for oncological and degenerative spine surgery to improve the quality of care and minimize the risk of neurological deficit through the optimization of clinical decision-making during periods of intraoperative stress or uncertainty. After a literature review on risk factors and recommendations for responding to IONM changes, 3 surveys were administered to 8 surgeons with experience in oncological and degenerative spine surgery from 5 hospitals in Italy. In addition, anesthesiologists, intraoperative neuro-monitoring teams, operating room nurses participated. The members participated in the optimization and final drafting of the checklist. The authors reassessed and modified the checklist during 3 meetings over 9 months, including a clinical validation period using a modified Delphi process. A checklist containing 28 items to be considered in responding to the changes of the IONM was created. The checklist was submitted for inclusion in the new recommendations of the Italian Society of Clinical Neurophysiology (SINC) for intraoperative neurophysiological monitoring. The final checklist represents the consensus of a group of experienced spine surgeons. The checklist includes the most important and high-performance items to consider when responding to IONM changes in patients with an unstable spine. The implementation of this checklist has the potential to improve surgical outcomes and patient safety in the field of spinal surgery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 10 - 10
4 Apr 2023
Fridberg M Bue M Duedal Rölfing J Kold S Ghaffari A
Full Access

An international Consensus Group has by a Delphi approach identified the topic of host factors affecting pin site infection to be one of the top 10 priorities in external fixator management. The aim of this study was to report the frequency of studies reporting on specific host factors as a significant association with pin site infection. Host factors to be assessed was: age, smoking, BMI and any comorbidity, diabetes, in particular. The intention was an ethological review, data was extracted if feasible, however no meta-analysis was performed. A systematic literature search was performed according to the PRISMA-guidelines. The protocol was registered before data extraction in PROSPERO. The search string was based on the PICO criterias. A logic grid with key concept and index terms was made. A search string was built assisted by a librarian. The literature search was executed in three electronic bibliographic databases, including Embase MEDLINE (1111 hits) and CINAHL (2066 hits) via Ovid and Cochrane Library CENTRAL (387 hits). Inclusion criteria: external fixation, >1 pin site infection, host factor of interest, peer-reviewed journal. Exclusion criteria: Not written in English, German, Danish, Swedish, or Norwegian, animal or cadaveric studies, location on head, neck, spine, cranium or thorax, editorials or conference abstract. The screening process was done using Covidence. A total of 3564 titles found. 3162 excluded by title and abstract screening. 140 assessed for full text eligibility. 11 studies included for data extraction. The included studies all had a retrospective design. Three identified as case-control studies. Generally the included studies was assessed to have a high risk of bias. A significant associations between pin site infection for following host factors: a) increased HbA1C level in diabetic patients; b) congestive heart failure in diabetic patients; c) less co-morbidity; d) preoperative osteomyelitis was found individually. This systematic literature search identified a surprisingly low number of studies examining for risk of pin site infection and host factors. Thus, this review most of all serves to demonstrate a gap of evidence about correlation between host factors and risk of pin site infection, and further studies are warranted


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 43 - 43
17 Apr 2023
Hayward S Miles A Keogh P Gheduzzi S
Full Access

Injury of the intervertebral disc (IVD) can occur for many reasons including structural weakness due to disc degeneration. A common disc injury is herniation. A herniated nucleus can compress spinal nerves, causing pain, and nucleus depressurisation changes mechanical behaviour. Many studies have investigated in vitro IVD injuries including endplate fracture, incisions, and nucleotomy. There is, however, a lack of consensus on how the biomechanical behaviour of spinal motion segments is affected. The aim of this study was to induce defined changes to IVDs of spine specimens in vitro and apply 6 degree of freedom testing to evaluate the effect of these changes. Six porcine lumbar spinal motion segments were harvested from organically farmed pigs. Posterior structures were removed to produce isolated spinal disc specimens. Specimens were potted in Wood's metal, ensuring the midplane of the IVD remained horizontal. After potting, specimens were sprayed with 0.9% saline, wrapped in saline-soaked tissue and plastic wrap to prevent dehydration. A 400N axial preload was equilibrated for 30 minutes before testing. Specimens were tested intact and after a partial nucleotomy removing ~0.34g of nuclear material with a curette through an annular incision. Stiffness tests were performed using the University of Bath's custom 6-axis spine simulator with coordinate axes and displacement amplitudes. Tests comprised five cycles with data acquired at 100Hz. Stiffness matrices were evaluated from the last three motion cycles using the linear least squares method. Stiffness matrices for intact and nucleotomy tests were compared. No significant differences in shear, axial or torsional stiffnesses were noted. Nucleotomy caused significantly higher stiffness in lateral bending and flexion-extension with increased linearity and the load-displacement behaviour in these axes displayed no neutral zone (NZ). Induced changes were designed to replicate posterolaterally herniated discs. Unaffected shear, axial and torsional stiffnesses suggest the annulus is crucial in these axes. However, reduced ROM and NZ after nucleotomy suggests bending is most affected by herniation. Increased linearity and lack of defined NZ in these axes demonstrates herniation causes major changes to the viscoelastic behaviour of spine specimens in response to loading


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 3 - 3
17 Apr 2023
Taylan O Shah D Dandois F Han W Neyens T Van Overschelde P Scheys L
Full Access

Mechanical alignment (MA) in total knee arthroplasty (TKA), although considered the gold standard, reportedly has up to 25% of patients expressing post-operative dissatisfaction. Biomechanical outcomes following kinematic alignment (KA) in TKA, developed to restore native joint alignment, remain unclear. Without a clear consensus for the optimal alignment strategy during TKA, the purpose of this study was to conduct a paired biomechanical comparison of MA and KA in TKA by experimentally quantifying joint laxity and medial collateral ligament (MCL) strain. 14 bilateral native fresh-frozen cadaveric lower limbs underwent medially-stabilised TKA (GMK Sphere, Medacta, Switzerland) using computed CT-based subject-specific guides, with KA and MA performed on left and right legs, respectively. Each specimen was subjected to sensor-controlled mediolateral laxity tests. A handheld force sensor (Mark-10, USA) was used to generate an abduction-adduction moment of 10Nm at the knee at fixed flexion angles (0°, 30°, 60°, 90°). A digital image correlation system was used to compute the strain on the superficial medial collateral ligament. A six-camera optical motion capture system (Vicon MX+, UK) was used to acquire kinematics using a pre-defined CT-based anatomical coordinate system. A linear mixed model and Tukey's posthoc test were performed to compare native, KA and MA conditions (p<0.05). Unlike MA, medial joint laxity in KA was similar to the native condition; however, no significant difference was found at any flexion angle (p>0.08). Likewise, KA was comparable with the native condition for lateral joint laxity, except at 30°, and no statistical difference was observed. Although joint laxity in MA seemed lower than the native condition, this difference was significant only for 30° flexion (p=0.01). Both KA and MA exhibited smaller MCL strain at 0° and 30°; however, all conditions were similar at 60° and 90°. Medial and lateral joint laxity seemed to have been restored better following KA than MA; however, KA did not outperform MA in MCL strain, especially after mid-flexion. Although this study provides only preliminary indications regarding the optimal alignment strategy to restore native kinematics following TKA, further research in postoperative joint biomechanics for load bearing conditions is warranted


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 88 - 88
2 Jan 2024
Kim M Kim, K
Full Access

There is still no consensus on which concentration of mesenchymal stem cells (MSCs) to use for promoting fracture healing in a rat model of long bone fracture. To assess the optimal concentration of MSCs for promoting fracture healing in a rat model. Wistar rats were divided into four groups according to MSC concentrations: Normal saline (C), 2.5 × 106 (L), 5.0 × 106 (M), and 10.0 × 106 (H) groups. The MSCs were injected directly into the fracture site. The rats were sacrificed at 2 and 6 자 post-fracture. New bone formation [bone volume (BV) and percentage BV (PBV)] was evaluated using micro-computed tomography (CT). Histological analysis was performed to evaluate fracture healing score. The protein expression of factors related to MSC migration [stromal cell-derived factor 1 (SDF-1), transforming growth factor-beta 1 (TGF-β1)] and angiogenesis [vascular endothelial growth factor (VEGF)] was evaluated using western blot analysis. The expression of cytokines associated with osteogenesis [bone morphogenetic protein-2 (BMP-2), TGF-β1 and VEGF] was evaluated using real-time polymerase chain reaction. Micro-CT showed that BV and PBV was significantly increased in groups M and H compared to that in group C at 6 wk post-fracture (P = 0.040, P = 0.009; P = 0.004, P = 0.001, respectively). Significantly more cartilaginous tissue and immature bone were formed in groups M and H than in group C at 2 and 6 wk post-fracture (P = 0.018, P = 0.010; P = 0.032, P = 0.050, respectively). At 2 wk post fracture, SDF-1, TGF-β1 and VEGF expression were significantly higher in groups M and H than in group L (P = 0.031, P = 0.014; P < 0.001, P < 0.001; P = 0.025, P < 0.001, respectively). BMP-2 and VEGF expression were significantly higher in groups M and H than in group C at 6 wk postfracture (P = 0.037, P = 0.038; P = 0.021, P = 0.010). Compared to group L, TGF-β1 expression was significantly higher in groups H (P = 0.016). There were no significant differences in expression levels of chemokines related to MSC migration, angiogenesis and cytokines associated with osteogenesis between M and H groups at 2 and 6 wk post-fracture. The administration of at least 5.0 × 106 MSCs was optimal to promote fracture healing in a rat model of long bone fractures


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 29 - 29
1 Dec 2022
Pedrini F Salmaso L Mori F Sassu P Innocenti M
Full Access

Open limb fractures are typically due to a high energy trauma. Several recent studied have showed treatment's superiority when a multidisciplinary approach is applied. World Health Organization reports that isolate limb traumas have an incidence rate of 11.5/100.000, causing high costs in terms of hospitalization and patient disability. A lack of experience in soft tissue management in orthopaedics and traumatology seems to be the determining factor in the clinical worsening of complex cases. The therapeutic possibilities offered by microsurgery currently permit simultaneous reconstruction of multiple tissues including vessels and nerves, reducing the rate of amputations, recovery time and preventing postoperative complications. Several scoring systems to assess complex limb traumas exist, among them: NISSSA, MESS, AO and Gustilo Anderson. In 2010, a further scoring system was introduced to focus open fractures of all locations: OTA-OFC. Rather than using a single composite score, the OTA-OFC comprises five components grades (skin, arterial, muscle, bone loss and contamination), each rated from mild to severe. The International Consensus Meeting of 2018 on musculoskeletal infections in orthopaedic surgery identified the OTA-OFC score as an efficient catalogue system with interobserver agreement that is comparable or superior to the Gustilo-Anderson classification. OTA-OFC predicts outcomes such as the need for adjuvant treatments or the likelihood of early amputation. An orthoplastic approach reconstruction must pay adequate attention to bone and soft tissue infections management. Concerning bone management: there is little to no difference in terms of infection rates for Gustilo-Anderson types I–II treated by reamed intramedullary nail, circular external fixator, or unreamed intramedullary nail. In Gustilo-Anderson IIIA-B fractures, circular external fixation appears to provide the lowest infection rates when compared to all other fixation methods. Different technique can be used for the reconstruction of bone and soft tissue defects based on each clinical scenario. Open fracture management with fasciocutaneous or muscle flaps shows comparable outcomes in terms of bone healing, soft tissue coverage, acute infection and chronic osteomyelitis prevention. The type of flap should be tailored based on the type of the defect, bone or soft tissue, location, extension and depth of the defect, size of the osseous gap, fracture type, and orthopaedic implantation. Local flaps should be considered in low energy trauma, when skin and soft tissue is not traumatized. In high energy fractures with bone exposure, muscle flaps may offer a more reliable reconstruction with fewer flap failures and lower reoperation rates. On exposed fractures several studies report precise timing for a proper reconstruction. Hence, timing of soft tissue coverage is a critical for length of in-hospital stay and most of the early postoperative complications and outcomes. Early coverage has been associated with higher union rates and lower complications and infection rates compared to those reconstructed after 5-7 days. Furthermore, early reconstruction improves flap survival and reduces surgical complexity, as microsurgical free flap procedures become more challenging with a delay due to an increased pro-thrombotic environment, tissue edema and the increasingly friable vessels. Only those patients presenting to facilities with an actual dedicated orthoplastic trauma service are likely to receive definitive treatment of a severe open fracture with tissue loss within the established parameters of good practice. We conclude that the surgeon's experience appears to be the decisive element in the orthoplastic approach, although reconstructive algorithms may assist in decisional and planification of surgery


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 7 - 7
1 Dec 2021
Jamal S Ibrahim Y Akhtar K
Full Access

Abstract. Objective. Open fracture management in the United Kingdom and several other countries is guided by the British Orthopaedic Association's Standards for Trauma Number 4 (BOAST-4). This is updated periodically and is based on the best available evidence at the time. The aim of this study is to evaluate the evidence base forming this guidance and to highlight new developments since the last version in 2017. Methods. Searches have been performed using the PubMed, Embase and Medline databases for time periods a) before December 31, 2017 and from 01/01/2018–01/02/2021. Results have been summarised and discussed. Results. Several contentious issues remain within the 2017 guideline. Antibiotic guidance, the use of antibiotic impregnated PMMA beads and intramedullary devices, irrigation in the emergency department, time to theatre and the use of negative pressure dressings and guidance regarding the management of paediatric injuries have all demonstrated no clear consensus. Conclusion. The advent of the BOAST-4 guideline has been of huge benefit, however the refinement and improvement of this work remains ongoing. There remains a need for further study into these contentious issues previously listed


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 58 - 58
1 Nov 2021
Soubrier A Kasper H Alini M Jonkers I Grad S
Full Access

Introduction and Objective. Low back pain (LBP) is a major cause of long-term disability in adults worldwide and it is frequently attributed to intervertebral disc (IVD) degeneration. So far, no consensus has been reached regarding appropriate treatment and LBP management outcomes remain disappointing. Spine unloading or traction protocols are common non-surgical approaches to treat LBP. These treatments are widely used and result in pain relief, decreased disability or reduced need for surgery. However, the underlying mechanisms -namely, the IVD unloading mechanobiology- have not yet been studied. The aim of this first study was to assess the feasibility of IVD unloading in a large animal organ culture set-up and evaluate its impact on mechanobiology. Materials and Methods. Bovine tail discs (diameter 16.1 mm ± 1.2 mm), including the endplates, were isolated and prepared for culture. Beside the day0 sample that was processed directly, three other discs were cultured for 3 days and processed on day4. One disc was loaded in the bioreactor according to a previously established physiological (compressive) loading protocol (2h/day, 0.2Hz). The two other discs were embedded in biocompatible resin, leaving the cartilage endplate free to permit nutrient diffusion, and fitted in the traction holder; one of these discs was kept in free swelling conditions, whereas the second was submitted to cyclic traction loading (2h/day, 0.2Hz) corresponding to 30% of the animal body weight corrected for organ culture. Results. The cell viability assessed on lactate dehydrogenase and ethidium homodimer stained histological slides was not different between the three cultured discs. This means that the disc viability was not affected neither by the embedding, nor by the traction itself. Compared to the physiologically loaded disc, the gene expression of COL1, COL2 and ACAN was higher in the nucleus pulposus and inner annulus fibrosus of the traction treated disc. In the outer annulus fibrosus of this disc TAGLN and MKX were higher expressed upon traction than in the physiologically loaded disc. Conclusions. Based on these preliminary data, we can conclude that large animal organ culture allows effective unloading of the disc, while preserving cell viability and modulating cellular gene expression responses. This sets the ground for future experiments and opens the door to an evidence-based improvement of clinical spine traction protocols and LBP management overall


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 8 - 8
1 Nov 2021
Khojaly R Rowan FE Nagle M Shahab M Ahmed AS Dollard M Taylor C Cleary M Niocaill RM
Full Access

Introduction and Objective. Ankle fractures are common and affect young adults as well as the elderly. An unstable ankle fracture treatment typically involves surgical fixation, immobilisation, and modified weight-bearing for six weeks. Non-weight bearing (NWB) cast immobilisation periods were used to protect the soft tissue envelope and osteosynthesis. This can have implications on patient function and may reduce independence, mobility and return to work. Newer trends in earlier mobilisation compete with traditional NWB doctrine, and weak consensus exists as to the best postoperative strategy. The purpose of this trial is to investigate the safety and efficacy of immediate weight-bearing (IWB) and range of motion (ROM) exercise regimes following ORIF of unstable ankle fractures with a particular focus on functional outcomes and complication rates. Materials and Methods. A pragmatic randomised controlled multicentre trial, comparing IWB in a walking boot and ROM within 24 hours versus non-weight-bearing (NWB) and immobilisation in a cast for six weeks, following ORIF of all types of unstable adult ankle fractures (lateral malleolar, bimalleolar, trimalleolar with or without syndesmotic injury). The exclusion criteria are skeletal immaturity and tibial plafond fractures. The primary outcome measure is the functional Olerud-Molander Ankle Score (OMAS). Secondary outcomes include wound infection (deep and superficial), displacement of osteosynthesis, the full arc of ankle motion (plantar flexion and dorsal flection), RAND-36 Item Short Form Survey (SF-36) scoring, time to return to work and postoperative hospital length of stay. Results. We recruited 160 patients with an unstable ankle fracture. Participants’ ages ranged from 15 to 94 years (M = 45.5, SD = 17.2), with 54% identified as female. The mean time from injury to surgical fixation was 1.3 days (0 to 17 days). Patients in the immediate weight-bearing group had a 9.5-point higher mean OMAS at six weeks postoperatively (95% CI 1.48, 17.52) P = 0.021. The complications rate was similar in both groups. The rate of surgical site infection was 4.3%. One patient had DVT, and another patient had a pulmonary embolism; both were randomised to NWB. Length of hospital stay (LOS) was 1 ± 1.5 (0, 12) for the IWB group vs 1.5 ± 2.5 (0, 19) for the NWB group. Conclusions. There is a paucity of quality evidence supporting the postoperative management regimes used most commonly in clinical practice. To our knowledge, immediate weight-bearing (IWB) following ORIF of all types of unstable ankle fractures has not been investigated in a controlled prospective manner in recent decades. In this large multicentre, randomised controlled trial, we investigated immediate weight-bearing following ORIF of all ankle fracture patterns in the usual care condition using standard fixation methods. Our result suggests that IWB following ankle fracture fixation is safe and resulted in a better functional outcome. Once anatomical reduction and stable internal fixation is achieved, we recommend IWB in all types of ankle fractures in a compliant patient


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 91 - 91
1 Nov 2021
Aljasim O Yener C Demirkoparan M Bilge O Küçük L Gunay H
Full Access

Introduction and Objective. Zone 2 flexor tendon injuries are still one of the challenges for hand surgeons. It is not always possible to achieve perfect results in hand functions after these injuries. There is no consensus in the literature regarding the treatment of zone 2 flexor tendon injuries, tendon repair and surgical technique to be applied to the A2 pulley. The narrow fibro-osseous canal structure in zone 2 can cause adhesions and loss of motion due to the increase in tendon volume due to surgical repair. Different surgical techniques have been defined to prevent this situation. In our study, in the treatment of zone 2 flexor tendon injuries; Among the surgical techniques to be performed in addition to FDP tendon repair; We aimed to compare the biomechanical results of single FDS slip repair, A2 pulley release and two different pulley plasty methods (Kapandji and V-Y pulley plasty). Materials and Methods. In our study, 12 human upper extremity cadavers preserved with modified Larssen solution (MLS) and amputated at the mid ½ level of the arm were used. A total of 36 fingers (second, third and the fourth fingers were used for each cadaver) were divided into four groups and 9 fingers were used for each group. With the finger fully flexed, the FDS and FDP tendons were cut right in the middle of the A2 pulley and repaired with the cruciate four-strand technique. The surgical techniques described above were applied to the groups. Photographs of fingers with different loads (50 – 700 gr) were taken before and after the application. Proximal interphalangeal (PIP) joint angle, PIP joint maximum flexion angle and bowstring distance were measured. The gliding coefficient was calculated by applying the PIP joint angle to the single-phase exponential association equation. Results. Gliding coefficient after repair increased by %21.46 ± 44.41, %62.71 ± 116.9, %26.8 ± 35.35 and %20.39 ± 28.78 in single FDS slip repair, A2 pulley release, V-Y pulley plasty and Kapandji plasty respectively. The gliding coefficient increased significantly in all groups after surgical applications (p<0.05). PIP joint maximum flexion angle decreased by %3.17 ± 7.92, %12.82 ± 10.94, %8.33 ± 3.29 and %7.35 ± 5.02 in single FDS slip repair, A2 pulley release, V-Y pulley plasty and Kapandji plasty respectively. PIP joint maximum flexion angle decreased significantly after surgery in all groups (p<0.05). However, there was no statistically significant difference between surgical techniques for gliding coefficient and PIP joint maximum flexion angle. Bowstring distance between single FDS slip repair, kapandji pulley plasty and V-Y pulley plasty showed no significant difference in most loads (p>0.05). Bowstring distance was significantly increased in the A2 pulley release group compared to the other three groups (p<0.05). Conclusion. Digital motion was negatively affected after flexor tendon repair. Similar results were found in terms of gliding coefficient and maximum flexion angle among different surgical methods. As single FDS slipe repair preserves the anatomical structure of the A2 pulley therefore we prefer it as an ideal method for zone 2 flexor tendon repair. However, resection of FDS slip may jeopardizes nutrition to the flexor digitorum profundus tendon which weakens the repair site. Therefore the results must be confirmed by an in vivo study before a clinical recommendation can be made. Keywords: Flexor tendon; injury; pulley plasty; cadaver;


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 44 - 44
1 Mar 2021
Spezia M Macchi M Elli S Schiaffini G Chisari E
Full Access

Adipose tissue releases several bioactive peptides and hormones, like adipokines that promote a low inflammatory systemic state. Inflammation, affecting the tendon homeostasis, could play a role in tendon disease development as well as in the healing process. Obese patients show a dysregulated level of adipokines and considering the higher mechanical demand, this relates to higher incidence of tendinopathies among these subjects. A systematic review was performed searching PubMed, Embase and Cochrane Library databases. Inclusion criteria were studies of any level of evidence published in peer-reviewed journals reporting clinical or preclinical results. Evaluated data were extracted and critically analysed. PRISMA guidelines were applied, and risk of bias was assessed, as was the methodological quality of the included studies. We excluded all the articles with high risk of bias and/or low quality after the assessment. After applying the previously described criteria, we included 12 articles assessed as medium or high quality. Leptin, others adipokines and in general changes in the hormones delicate equilibrium affect the tendon either qualitatively and/or quantitatively. The evidence still lacks consensus on their role which is probably involved in both anabolic and catabolic pathways. The role of adipokines in the structure and healing of tendons is still debated. Further studies are needed to clarify the relation between deregulated levels of adipokines and the development of tendinopathy. A better understanding of the molecular interactions could allow us to individuate future therapeutic targets


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 46 - 46
1 Mar 2021
Valverde J Kabariti R Smith J Kelly M Murray J
Full Access

Pre-operative anaemia can present in up to 30% of elective arthroplasty patients. The presence of anaemia increases the risk of requiring blood transfusion post-operatively as well as acts as an independent risk factor for poor outcome such as prosthetic joint infection. Recent international consensus on this topic has recommended a specific care pathway for screening patients with pre-operative anaemia using a simple bedside Heaemacue finger-prick test to detect in a simple and cost-effective manner, and then allow treatment of preoperative anaemia. This pathway was therefore incorporated in our trust. This was a retrospective study done at a single tertiary-referral arthroplasty centre. Our data collection included the Heamacue test results and formal haemoglobin levels if they were performed as well as compliance and costs of each of the tests for patients listed for an elective shoulder, hip and knee arthroplasty between September and December 2018. Medical records and demographics were also collected for these patients for subgroup analysis. Our exclusion criteria comprised patients listed for revision arthroplasty surgery. 87 patients were included in this study. Our compliance rate was 15%. The mean difference between a Haemacue test and a formal FBC result was only 17.6g/L suggesting that it has a reasonably high accuracy. With regards to costs, we found that a Haemacue test costs £2, compared to £7.50 for a full blood count and Haematinics combined. This gave an overall cost saving of £5.50 per patient. Extrapolation of this date locally for 2017 at our hospital, where 1575 primary joint arthroplasties were done, a cost saving of £8,662.5 could have been achieved. Within the UK using data extrapolated from the National Joint Registry a total of £1,102,205.5 (1,221,894 Euros) could have been saved. The use of a single, Haemacue test to screen for pre-operative anaemia in elective arthroplasty patients is more cost effective compared to a formal full count and haematinics tests. However, we found that compliance with the care pathway is variable due to system limitations. This may be addressed through implementing changes to our electronic system in which patients are booked for surgery. We also noted a significant cost reduction if this pathway were to be used Nation-wide. Thus, we encourage other centres to consider the use of the Haemacue test pre-operatively in elective arthroplasty instead of formal full blood counts at the time of decision to treat with arthroplasty; this allows sufficient time for correction of pre-operative anaemia thus improving patient outcomes from arthroplasty


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 23 - 23
1 Mar 2021
Schopper C Zderic I Menze J Muller D Rocci M Knobe M Shoda E Richards G Gueorguiev B Stoffel K
Full Access

Femoral neck fractures account for half of all hip fractures and are recognized as a major public health problem associated with a high socioeconomic burden. Whilst internal fixation is preferred over arthroplasty for physiologically younger patients, no consensus exists about the optimal fixation device yet. The recently introduced implant Femoral Neck System (FNS) (DePuy Synthes, Zuchwil, Switzerland) was developed for dynamic fixation of femoral neck fractures and provides angular stability in combination with a minimally invasive surgical technique. Alternatively, the Hansson Pin System (HPS) (Swemac, Linköping, Sweden) exploits the advantages of internal buttressing. However, the obligate peripheral placement of the pins, adjacent to either the inferior or posterior cortex, renders the instrumentation more challenging. The aim of this study was to evaluate the biomechanical performance of FNS versus HPS in a Pauwels II femoral neck fracture model with simulated posterior comminution. Forty-degree Pauwels II femoral neck fractures AO 31-B2.1 with 15° posterior wedge were simulated in fourteen paired fresh-frozen human cadaveric femora, followed by instrumentation with either FNS or HPS in pair-matched fashion. Implant positioning was quantified by measuring the shortest distances between implant and inferior cortex (DI) as well as posterior cortex (DP) on anteroposterior and axial X-rays, respectively. Biomechanical testing was performed in 20° adduction and 10° flexion of the specimens in a novel setup with simulated iliopsoas muscle tension. Progressively increasing cyclic loading was applied until construct failure. Interfragmentary femoral head-to-shaft movements, namely varus deformation, dorsal tilting and rotation around the neck axis were measured by means of motion tracking and compared between the two implants. In addition, varus deformation and dorsal tilting were correlated with DI and DP. Cycles to 5/10° varus deformation were significantly higher for FNS (22490±5729/23007±5496) versus HPS (16351±4469/17289±4686), P=0.043. Cycles to 5/10° femoral head dorsal tilting (FNS: 10968±3052/12765±3425; HPS: 12244±5895/13357±6104) and cycles to 5/10° rotation around the femoral neck axis (FNS: 15727±7737/24453±5073; HPS: 15682±10414/20185±11065) were comparable between the implants, P≥0.314. For HPS, the outcomes for varus deformation and dorsal tilting correlated significantly with DI and DP, respectively (P=0.025), whereas these correlations were not significant for FNS (P≥0.148). From a biomechanical perspective, by providing superior resistance against varus deformation and performing in a less sensitive way to variations in implant placement, the angular stable Femoral Neck System can be considered as a valid alternative to the Hansson Pin System for the treatment of Pauwels II femoral neck fractures