Aim. Multispecies biofilms are associated with difficult periprosthetic joint infections (PJI), particularly if they have different antibiotic sensitivities. We aimed to determine if we could generate and kill a multispecies biofilm consisting of a Gram negative and Gram positive pathogen in-vitro with antibiotic loaded calcium sulfate beads containing single or combination antibiotics. Methods. To establish whether we could co-culture mixed species biofilms various combinations of Pseudomonas aeruginosa (PA), Enterococcus faecalis (EF), Staphylococcus aureus (SA) and Enterobacter faecalis (EF) were grown together on 316L stainless steel coupons and agar plates. Based on this screen we focused on PA + EF and challenged them with high purity calcium sulfate beads (Stimulan Rapid Cure) loaded with vancomycin (V), alone tobramycin (T) alone or vancomycin and tobramycin in combination (V+T). Bioluminescence, light imaging, plate count,
Aim. The aim of this study was to establish an implant-associated osteomyelitis model in rats with the ability to quantify biofilm formation on implants for prospective evaluation of antibacterial effects on micro-structured implant surfaces. Method. Staphylococcus aureus (strain 36/07) suspension with infection concentrations of 106, 105, 104 and 10. 3. CFU/10µl, respectively was injected in the tibia of 32 rats (n=8 per group). Afterwards a titanium implant (0.8×0.8×12 mm) was inserted. 8 rats were implanted with a preincubated implant (107 CFU/ml, 12 h) and 8 rats served as a control (injection of 0.9% NaCl). During the follow up, clinical, radiographic and µ-CT examinations were conducted. On day 21 post op, all rats were sacrificed. Implant and tibia were explanted under sterile conditions. The implant was stained with green and red fluorescent nucleic acid dye (live/ dead) and analyzed by
Aim. “Implant associated Staphylococcus aureus or S. epidermidis infections are often difficult to treat due to the formation of biofilms on prosthetic material. Biofilms are bacterial communities adhered to a surface with a self-made extracellular polymeric substance that surrounds resident bacteria. In contrast to planktonic bacteria, bacteria in a biofilm are in an adherent, dormant state and are insensitive to most antibiotics. In addition, bacteria in a biofilm are protected from phagocytic cells of the immune system. Therefore, complete surgical removal and replacement of the prosthetic implant is often necessary to treat this type of infections. Neutrophils play a crucial role in clearing bacterial pathogens. They recognize planktonic bacteria via immunoglobulin (Ig) and complement opsonisation. In this project, we aim to evaluate the role of IgG and complement in the recognition and clearance of staphylococcal biofilms by human neutrophils. Furthermore, we evaluate if monoclonal antibodies (mAbs) targeting biofilm structures can enhance recognition and clearance of staphylococcal biofilms by the human immune system.”. Method. “We produced a set of 20 recombinant mAbs specific for staphylococcal antigens. Using flow cytometry and ELISA-based methods we determined the binding of these mAbs to planktonic staphylococci and in vitro staphylococcal biofilms. Following incubation with IgG/IgM depleted human serum we determined whether mAbs can react with the human complement system after binding to biofilm.
Testing potential therapeutics in the regeneration of the disc requires the use of model systems. Although several animal models have been developed to test intervertebral disc (IVD) regeneration, application becomes costly when used as a screening method. The bovine IVD organ culture system offers an inexpensive alternative, however, in the current paradigm, the bony vertebrae is removed to allow for nutrient diffusion to disc cells. This provides limitations on the conditions and strategies one can employ in investigating IVD regeneration and mechanisms in degenerative disc disease (i.e. complex loading). Although one method has been attempted to extend the survival of bovine vertebrae containing IVDs (vIVD) cell viability declined after two weeks in culture. Our goal was to develop and validate a long-term organ culture model with vertebral bone, which could be used subsequently for studying biological repair of disc degeneration and biomechanics. Preparation of vIVDs: Bovine IVDs from the tails of 22–28-month-old steers were prepared for organ culture by parallel cuts through the adjacent vertebral bodies at 1cm from the endplates using an IsoMet®1000 Buehler precision sectioning saw. vIVDs were split into two groups: IVDs treated with PrimeGrowth Media kit (developed by Intervertech and licensed to Wisent Bioproducts) and IVDs with DMEM. The PrimeGrowth group was incubated for 1h in PrimeGrowth Isolation Medium (Cat# 319–511-EL) and the DMEM group for 1h in DMEM. After isolation, IVDs were washed in PrimeGrowth Neutralisation Medium (Cat# 319–512-CL) while the other IVDs were washed in DMEM. The discs isolated with PrimeGrowth and DMEM were cultured for up to 5 months in sterile vented 60 ml Leakbuster™ Specimen Containers in PrimeGrowth Culture Medium (Cat# 319–510-CL) and DMEM with no mechanical load applied. Live/Dead Assay: vIVDs cultured for 1 or 5 months were dissected and cell viability was assessed in different regions by
Background. Membrane type 1 matrix metalloproteinase (MT1-MMP) plays a role in the progression of several common solid cancers. Given that osteosarcoma features extensive local invasion and haematogenous metastases, we hypothesised that osteosarcoma cells utilise MT1-MMP to drive these processes. Moreover, since hypoxia regulates MT1-MMP expression in breast cancer we investigated the effects of hypoxia on MT1-MMP expression in osteosarcoma cells. Aims. Examination of MT1-MMP expression in osteosarcoma biopsy tissue in relation to clinical outcome. Assessment of MT1-MMP, together with hypoxia inducible factors HIF-1α and HIF-2α expression in a panel of osteosarcoma cell lines under normoxia and hypoxia. Methods. Immunohistochemistry: Formalin-fixed and paraffin embedded osteosarcoma biopsy samples from 71 patients were immunostained for MT1-MMP, HIF-1α and -2α and the data correlated with patient survival.
Purpose. Disc degeneration is known to occur early in adult life, but at present there is no medical treatment to reverse or even retard the problem. Development of medical treatments is complicated by the lack of a validated long term organ culture model in which therapeutic candidates can be studied. The objective of this study was to optimize and validate an organ culture system for intact human intervertebral disc (IVD), which could be used subsequently to determine whether synthetic peptide growth factors can stimulate disc cell metabolism and initiate a repair response. Method. Seventy lumbar IVDs, from 14 individuals, were isolated within 24 h after death. Discs were prepared for organ culture by removing bony endplates but retaining cartilaginous endplates (CEP). Discs were cultured with no external load applied. The effects of glucose and FBS concentrations were evaluated. Dulbeccos Modified Eagle Media (DMEM) was supplemented with glucose, 4.5g/L or 1g/L, referred to as high and low (physiological) glucose, and FBS, 5% or 1%, referred to as high and low FBS, respectively. After a four week culture period, samples were taken across the disc using a 4 mm biopsy punch. Cell viability was analyzed using a live/dead fluorescence assay (Live/Dead, Invitrogen) and visualized by
Purpose. Traumatic articular cartilage (AC) defects are common in young adults and frequently progresses to osteoarthritis. Matrix-Induced Autologous Chondrocyte Implantation (MACI) is a recent advancement in cartilage resurfacing techniques and is a variant of ACI, which is considered by some surgeons to be the gold standard in AC regeneration. MACI involves embedding cultured chondrocytes into a scaffold that is then surgically implanted into an AC defect. Unfortunately, chondrocytes cultured in a normoxic environment (conventional technique) tend to de-differentiate resulting in decreased collagen II and increased collagen I producing in a fibrocartilagous repair tissue that is biomechanically inferior to AC and incapable of withstanding physiologic loads over prolonged periods. The optimum conditions for maintenance of chondrocyte phenotype remain elusive. Normal oxygen tension within AC is <7%. We hypothesized that hypoxic conditions would induce gene expression and matrix production that more closely characterizes normal articular chondrocytes than that achieved under normoxic conditions when chondrocytes are cultured in a collagen scaffold. Method. Chondrocytes were isolated from Outerbridge grade 0 and 1 AC from four patients undergoing total knee arthroplasty and embedded within 216 bovine collagen I scaffolds. Scaffolds were incubated in hypoxic (3% O2) or normoxic (21% O2) conditions for 1hr, 21hr and 14 days. Gene expression was determined using Q-rt-PCR for col I/II/X, COMP, SOX9, aggrecan and B actin. Matrix production was determined using glycosaminoglycan (GAG) content relative to cell count determined by DNA quantification. Cell viability and location within the matrix was determined by Live/Dead assay and
Purpose. Disc degeneration is known to occur early in adult life, but at present there is no medical treatment to reverse or even retard the problem. Development of medical treatments is complicated by the lack of a validated long term organ culture model in which therapeutic candidates can be studied. The objective of this study was to optimize and validate an organ culture system for intact human intervertebral disc (IVD), which could be used subsequently to determine whether synthetic peptide growth factors can stimulate disc cell metabolism and initiate a repair response. Method. Seventy lumbar IVDs, from 14 individuals, were isolated within 24 h after death. Discs were prepared for organ culture by removing bony endplates but retaining cartilaginous endplates (CEP). Discs were cultured with no external load applied. The effects of glucose and FBS concentrations were evaluated. Dulbeccos Modified Eagle Media (DMEM) was supplemented with glucose, 4.5g/L or 1g/L, referred to as high and low (physiological) glucose, and FBS, 5% or 1%, referred to as high and low FBS, respectively. After a four week culture period, samples were taken across the disc using a 4 mm biopsy punch. Cell viability was analyzed using a live/dead fluorescence assay (Live/Dead, Invitrogen) and visualized by