Study design. Literature review of the best available evidence on the accuracy of computer assisted pedicle screw insertion. Background. Pedicle screw misplacement rates with the conventional insertion technique and adequate postoperative CT examination have ranged from 5 to 29 % in the cervical spine, from 3 to 58 % in the thoracic spine, and from 6 to 41% in the lumbosacral region. Despite these relatively high perforation rates, the incidence of reported screw-related complications has remained low. Interestingly, the highest rates of neurovascular injuries have been reported from the lumbosacral spine in up to 17% of the patients. Gertzbein and Robbins introduced a 4-mm “safe zone” in the thoracolumbar spine for medial encroachment, consisting of 2-mm of epidural and 2-mm of subarachnoid space. Later, several authors have found the safety margins to be significantly smaller, suggesting that the “safe zone” thresholds of Gertzbein and Robbins do not apply to the thoracic spine, and seem to be too high even for the lumbar spine. The midthoracic and midcervical spine, as well as the thoracolumbar junction set the highest demands for accuracy in pedicle screw insertion, with no room for either translational or rotational error at e.g. T5 level. Computer assisted pedicle screw insertion (navigation) was introduced in the early 90's to increase the accuracy and safety of pedicle screw insertion. Material. PubMed literature search revealed two randomized controlled trials (RCT) comparing the in vivo accuracy of conventional and computer assisted pedicle screw insertion techniques. Three meta-analyses have assessed the published reports on the accuracy of pedicle screw insertion with or without computer assistance, one additional meta-analysis concentrated on the functional outcome of computer assisted pedicle screw insertion. Results. The RCTs by Laine et al and Rajasekaran et al achieved significantly higher screw placement accuracy with computer assistance than with the conventional techniquebased on anatomical landmarks. In a degenerative patient population, Laine et al reported a misplacement rate of 4.6% with computer assistance compared to 13.4% with the conventional technique. In addition to this quantitative difference, a qualitative difference in the misplaced screws was noticed: in the conventional group, 28 out of 37 misplaced screws were either inferior or medial, whereas in the computer assisted group, 1 out of 10 misplaced screws was situated in these ”danger zones”. In deformity surgery, Rajasekaran et al reported a 2% pedicle screw misplacement rate with a computer assisted technique compared to 23% with the conventional technique. Interestingly, in their study, the average screw insertion time in the computer assisted group was significantly shorter than with the conventional technique. The three meta-analyses, assessing up to 37 337 pedicle screws, reported significantly higher accuracy in the placement of pedicle screws with computerassistance compared with the conventional methods. The superiority of the computer assisted technique was even more obvious with abnormal surgical anatomy. CT-based and 3D-fluoroscopy-based navigation methods provided better accuracy compared to 2Dfluoroscopy-based navigation. No statistically significant benefit with computer assistance in the incidence of neuro-vascular complications, or in functional outcome was demonstrated. Conclusion. High pedicle screw misplacement rates have been reported with the conventional technique based on anatomical landmarks and intraoperative fluoroscopy. The concept of ”safe zone” is hypothetical, and underestimates the true risks of misplaced pedicle screws. Computer assistance significantly improves the accuracy and safety of pedicle screw insertion. It will, however, be difficult to correlate this increased accuracy to improved patient outcomes