Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XV | Pages 5 - 5
1 Apr 2012
Eardley W Bonner T Gibb I Clasper J
Full Access

Introduction. This is the first study to illustrate spinal fracture distribution and the impact of different injury mechanisms on the spinal column during contemporary warfare. Methods Retrospective analysis of Computed Tomography (CT) spinal images entered onto the Centre for Defence Imaging (CDI) database, 2005-2009. Isolated spinous and transverse process fractures were excluded to allow focus on cases with implications for immediate management and prospective disability burden. Fractures were classified by anatomical level and stability with validated systems. Clinical data regarding mechanism of injury and associated non-spinal injuries for each patient was recorded. Statistical analysis was performed by Fisher's Exact test. Results 57 cases (128 fractures) were analysed. Ballistic (79%) and non-ballistic (21%) mechanisms contribute to vertebral fracture and spinal instability at all regions of the spinal column. There is a low incidence of cervical spine fracture, with these injuries predominantly occurring due to gunshot wounding. There is a high incidence of lumbar spine fractures which are significantly more likely to be caused by explosive devices than gunshot wounds (p<0.05). 66% of thoracolumbar spine fractures caused by explosive devices were unstable, the majority being of a burst configuration. Associated non-spinal injuries occurred in 60% of patients. There is a strong relationship between spinal injuries caused by explosive devices and lower limb fractures Conclusion Explosive devices account for significant injury to both combatants and civilians in current conflict. Injuries to the spine by explosions account for greater numbers, associated morbidity and increasing complexity than other means of injury


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 52 - 52
1 Sep 2012
Van Der Linden H Van Der Zwaag H Konijn L Van Der Steenhoven T Van Der Heide H Nelissen R
Full Access

Introduction. Malrotation following total knee replacement is directly related to poor outcome. The knowledge of proximal and distal rotational axes and angles of the femur is therefore of high importance. The aim of the study was to determine whether the most used proximal and distal femoral angles; femoral anteversion angle (FAA) and posterior condylar angle (PCA) were different within individuals, between right, left and gender. As well, we studied whether the “inferior condylar angle” is correlated to the PCA and therefore useful in determining the rotation of the distal femur. Material and Methods. From 36 cadavers the femora were obtained and after removing the soft tissue a Computed Tomography (CT) scan was made. Three angles were measured: (i) the FAA between femoral columnar line (FHNL) and posterior condylar line (PCL), (ii) the PCA between anatomical transepicondylar line (TEL) and PCL, (iii) the inferior condylar angle (ICA) between the TEL and inferior condylar line (ICL). Statistical analysis of comparative relationships between the different angles was examined by calculating correlation coefficients and a paired t-test. Results. The mean FAA, PCA and ICA for the whole group were respectively 12.0 degrees (range 0.2–31.6, SD 8.3, 95% CI 9.6–14.4), 4.8 degrees (range 0.9–9.6, SD 2.3, 95% CI 4.1–5.4) and 4.5 degrees (range 0.1–9.8, SD 2.1, 95% CI 3.9–5.1). A strong correlation of the FAA was found within the total group and left versus right (r = 0.82; p = 0.00). A weaker relationship was found for the total group of the PCA measurements (r = 0.59; p = 0.00). When FAA compared to the PCA subdivided in only sexes, there is a weak correlation for the female group (r = 0.54; p = 0.00) Despite the small mean difference of the mean ICA and PCA, there was no correlation between these two angles. Conclusion. Considering the weak correlation of the FAA and PCA within the group but also individuals, the importance of development of more individual approaches for determining the optimal rotation of the components in total knee surgery is essential. As a result, one should be aware that the widely used, current guidelines for knee rotation of 3 degrees of external rotation in placing total knee arthroplasties shows variation between individuals. A more individual approach in total knee arthroplasty seems essential for future knee prosthesis implantations


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 978 - 983
1 Jul 2014
Wadsten MÅ Sayed-Noor AS Englund E Buttazzoni GG Sjödén GO

This paper investigates whether cortical comminution and intra-articular involvement can predict displacement in distal radius fractures by using a classification that includes volar comminution as a separate parameter.

A prospective multicentre study involving non-operative treatment of distal radius fractures in 387 patients aged between 15 and 74 years (398 fractures) was conducted. The presence of cortical comminution and intra-articular involvement according to the Buttazzoni classification is described. Minimally displaced fractures were treated with immobilisation in a cast while displaced fractures underwent closed reduction with subsequent immobilisation. Radiographs were obtained after reduction, at 10 to 14 days and after union. The outcome measure was re-displacement or union.

In fractures with volar comminution (Buttazzoni type 4), 96% (53 of 55) displaced. In intra-articular fractures without volar comminution (Buttazzoni 3), 72% (84 of 117) displaced. In extra-articular fractures with isolated dorsal comminution (Buttazzoni 2), 73% (106 of 145) displaced while in non-comminuted fractures (Buttazzoni 1), 16 % (13 of 81 ) displaced.

A total of 32% (53 of 165) of initially minimally displaced fractures later displaced. All of the initially displaced volarly comminuted fractures re-displaced. Displacement occurred in 31% (63 of 205) of fractures that were still in good alignment after 10 to 14 days.

Regression analysis showed that volar and dorsal comminution predicted later displacement, while intra-articular involvement did not predict displacement. Volar comminution was the strongest predictor of displacement.

Cite this article: Bone Joint J 2014;96-B:978–83.