COVID-19 reduced availability of cross-sectional imaging, prompting the need to clinically justify pre-operative computed tomography (CT) in tibial plateau fractures (TPF). The study purpose was to establish to what extent does a CT alter the pre-operative plan in TPF compared to radiographs. There is a current paucity of evidence assessing its impact on surgical planning 50 consecutive TPF with preoperative CT were assessed by 4 consultant surgeons. Anonymised radiographs were assessed defining the column classification, planned setup, approach, and fixation technique. At a 1-month interval, randomised matched CT scans were assessed and the same data collected. A tibial plateau disruption score (TPDS) was derived for all 4 quadrants (no injury=0,split=1,split/depression=2 and depression=3). Radiograph and CT TPDS were assessed using an unpaired T-test.Abstract
INTRODUCTION
METHODOLOGY
Abstract. Introduction. Total joint arthroplasty (TJA) is one of the commonest and most successful orthopaedic procedures, used for the management of end-stage arthritis. With the recent introduction of robotic assisted joint replacement,
Introduction. Tibial tuberosity and trochlear groove (TT-TG) distance has been investigated for the patients with primary patellofemoral subluxation/dislocation. To date, TT-TG distance after TKA has not been evaluated, and the effect of postoperative TT-TG distance on patellar tracking is unknown. The purpose of the current study was to investigate the effect of TT-TG distance and rotational position of the femoral and tibial components on patellar tilt after TKA. Methods. Consecutive 115 knees for the diagnosis of osteoarthritis were included in the current study. TKA was performed using posterior cruciate ligament sacrificed prosthesis. A total of 17 men and 96 women with an average age of 75.3 years were included at the time of the surgery.
Introduction. Component position and overall limb alignment following total knee arthroplasty (TKA) have been shown to influence prosthetic survivorship and clinical outcomes. 1. The objective of this study was to compare the accuracy to plan of three-dimensional modeled (3D) TKA with manual TKA for component alignment and position. Methods. An open-label prospective clinical study was conducted to compare 3D modeling with manual TKA (non-randomized) at 4 U.S. centers between July 2016 and August 2018. Men and women aged > 18 with body mass index < 40kg/m. 2. scheduled for unilateral primary TKA were recruited for the study. 144 3DTKA and 86 manual TKA (230 patients) were included in the analysis of accuracy outcomes. Seven high-volume, arthroplasty fellowship-trained surgeons performed the surgeries. The surgeon targeted a neutral (0°) mechanical axis for all except 9 patients (4%) for whom the target was within 0°±3°.
Laboratory experiments and computational models were used to predict bone-implant micromotion and bone strains induced by the cemented and cementless Biomet Oxford medial Unicompartmental Knee Replacement (UKR) tibial implants. Methods. Ten fresh frozen cadaveric knees were implanted with cementless medial mobile UKRs, the tibias were separated and all the soft tissues were resected. Five strain gauge rosettes were attached to each tibia. Four Linear Transducers were used to measure the superior-inferior and transverse bone-implant micromotions. The cementless UKRs were assessed with 10 cycles of 1kN compressive load at 4 different bearing positions. The bone-constructs were re-assessed following cementation of the equivalent UKR. The cemented bone-implant constructs were also assessed for strain and micromotion under 10000 cycles of 10mm anterior-posterior bearing movement at 2Hz and 1kN load. The cadaveric specimens were scanned using
Introduction. The trochlear groove plays a major role in the mechanics and patho-mechanics of the patellofemoral joint. Our primary goal was to compare normal, osteoarthritic and dysplastic PFJs in terms of angles and distances. Method.
Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs.Objectives
Methods
Patient specific cutting guides generated by
preoperative Magnetic Resonance Imaging (MRI) of the patient’s extremity
have been proposed as a method of improving the consistency of Total
Knee Arthroplasty (TKA) alignment and adding efficiency to the operative
procedure. The cost of this option was evaluated by quantifying the
savings from decreased operative time and instrument processing
costs compared to the additional cost of the MRI and the guide.
Coronal plane alignment was measured in an unselected consecutive
series of 200 TKAs, 100 with standard instrumentation and 100 with
custom cutting guides. While the cutting guides had significantly lower
total operative time and instrument processing time, the estimated
$322 savings was overwhelmed by the $1,500 additional cost of the
MRI and the cutting guide. All measures of coronal plane alignment
were equivalent between the two groups. The data does not currently
support the proposition that patient specific guides add value to
TKA.
The appearance of the ‘grand-piano sign’ on the anterior resected surface of the femur has been considered to be a marker for correct femoral rotational alignment during total knee replacement. Our study was undertaken to assess quantitatively the morphological patterns on the resected surface after anterior femoral resection with various angles of external rotation, using a computer-simulation technique. A total of 50 right distal femora with varus osteoarthritis in 50 Korean patients were scanned using computerised tomography. Computer image software was used to simulate the anterior femoral cut, which was applied at an external rotation of 0°, 3° and 6° relative to the posterior condylar axis, and parallel to the surgical and clinical epicondylar axes in each case. The morphological patterns on the resected surface were quantified and classified as the ‘grand-piano sign’, ‘the boot sign’ and the ‘butterfly sign’. The surgeon can use the analogy of these quantified sign patterns to ensure that a correct rotational alignment has been obtained intra-operatively.