Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 61 - 61
1 Feb 2015
Callaghan J
Full Access

Reoperation on the acetabular side of the total hip arthroplasty construct because of acetabular liner wear with or without extensive osteolysis is the most common reoperation performed in revision hip surgery today. The options of revision of the component or component retention, liner exchange (cemented or direct reinsertion) and bone grafting represent a classic surgeon dilemma of choices and compromises. CT scanning is helpful in determining the size and location of osteolytic lesions. My preference is to retain the existing shell when possible especially when there are large osteolytic lesions but where structural support is maintained. The advantages of complete revision are easy access to lytic lesions, ability to change component position and the ability to use contemporary designs with optimal bearing surfaces (for wear and dislocation prevention). The disadvantage is bone disruption including pelvic discontinuity with component removal (less so with Explant Systems) and difficult reconstructions due to excessive bone loss from the osteolytic defects (sometimes requiring cup cages). The advantage of component retention is that structural integrity of the pelvis is maintained and in general, a higher quality polyethylene is utilised. For large lesions I use windows to debride and bone graft the lesions. If the locking mechanism is inadequate, cementing a liner, including a constrained liner in some cases, that has been scored in a spider web configuration provides durable results at 5-year follow-up. The downside to liner exchange is potential instability. We immobilise all liner exchange patients postoperatively


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 97 - 97
1 May 2014
Haidukewych G
Full Access

Vancouver A: If minimal displacement and prosthesis stable can treat nonoperatively. If displacement is unacceptable and/or osteolysis is present consider surgery. AL: Rare, avulsions from osteopenia and lysis. If large, displaced and include large portion of calcar-can destabilise stem and prompt femoral revision. AG: More common. Often secondary to lysis. Does not usually affect implant stability. Minimal displacement. Treat closed × 3 months. Revise later is needed to remove the particle generator, debride defects and bone graft. Displaced with good host bone stock. Consider early ORIF and bone grafting. Vancouver B:. B1: Rarely non-operative. ORIF with femoral component retention. Need to carefully identify stem fixation. B2's classified as B1's are doomed to fail. B1's correctly identified treated with plate, allograft struts or both. High union rates with component retention. B2: Femoral revision +/− strut allograft. Best results seen with patients revised with uncemented, extensively porous coated femoral stems. May use modular, fluted taper stems. B3: Proximal femoral replacement - Tumor prosthesis, Allograft Prosthetic Composite (APC). Uncemented femoral stem - Extensively porous coated, Fluted, tapered stem, Allograft strut. Vancouver C: Treat with standard fracture techniques. These fractures are away from the femoral prosthesis. Rarely nonoperative. Fixation options – Cerclage, Strut Allograft, Plate fixation, Retrograde IM nail, or a Combination thereof. Avoid stress risers between implants. Bypass (overlap) fixation. Consider allowing 2.5 cortical diameters between devices


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 67 - 67
1 Mar 2013
Alazzawi S Haddad F
Full Access

Introduction. Acute infection following Total Hip Arthroplasty (THA) is a serious complication. It is commonly treated by irrigation and debridement (I&D) with component retention (exchange only the mobile parts of the joint - head and liner). However, the reported re-infection rate with the use of this approach remains high. We are reporting our experience in using single - stage revision arthroplasty in treating acute infection of THA. We hypothesized that the infection control rate after immediate early revision for acute infection of cementless implants is better than has been reported for I&D with exchange of mobile parts. Methods. From our infection arthroplasty database, we reviewed the outcome of 19 patients who had an acute infection (within 6 weeks) of cementless THA. Our management strategy includes I&D and single-stage (direct-exchange) revision arthroplasty followed by 6 weeks course of culture specific oral antibiotics. Results. Patients' average age was 64 year (39–85), M:F = 11:8. There were 13 primary and 6 revision cementless THAs. Average time from the index operation to the development of clinical symptoms of infection was 18 days (4–41). 14 patients (73.7%) were successfully treated with single stage revision strategy with no evidence of re-infection at 64.3 (32–89) months of follow up. 5 patients (26.3%) developed re-infection requiring two stage-revision surgery. Discussion. Our results showed that single stage revision strategy has a better outcome in treating acute infection after THR than the outcomes reported for I&D with component retention. When faced with acute infection of a cementless implant, early implant exchange prior to ingrowth should be considered


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 100 - 100
1 Jun 2018
Berend M
Full Access

Implant selection in TKA remains highly variable. Surgeons consider pre-operative deformity, patient factors such as BMI and bone quality, surgical experience, retention or substitution for the PCL, type of articulation and polyethylene, cost, and fixation with or without cement. We have most frequently implanted the same implant for the majority of patients. This is based on the fact that multiple large series of TKAs have demonstrated that the most durable TKAs have been non-modular metal-backed tibial components, retention of the PCL, with a cemented all-polyethylene patellar component. Polymer wear must be addressed for long-term durability. One method for reducing polyethylene wear is eliminating modularity between a metal-backed tray and the articular bearing surface. This can be done with a metal-backed implant as with the IB-1, AGC, Vanguard Mono-lock, or with elimination of the metal backing via a one piece all-polyethylene tibial component. The all-polyethylene implants appear design and patient sensitive. We observed higher clinical failure rates in a flat-on-flat design. Other authors have observed improved survivorship with coronal dishing of the articular surfaces which centralises osseous stresses. All-polyethylene implants have promise in the future but require proven design and fixation design features


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 93 - 93
1 Jun 2018
Pagnano M
Full Access

Deep peri-prosthetic infection after partial or total knee arthroplasty is a disconcerting problem for patient and surgeon alike. The diagnosis of infection is sometimes obvious but frequently requires that the surgeon maintain a substantial index of suspicion for infection as the cause of pain or poor outcome after any joint arthroplasty. While surgical debridement with component retention is appropriate in a subgroup of patients with an acute peri-prosthetic infection, most delayed and chronic infections are best treated with component resection. With carefully selected patients and very aggressive debridement protocols some success has been demonstrated in Europe with single-stage exchange for infection. Most surgeons in North America, however, are unfamiliar with the very aggressive debridement techniques employed at European centers that promote single stage replant; and few surgeons in North America are currently comfortable in cementing a hinged total knee replacement in place for the typical infected TKA nor do they have the patience to re-prep and drape with an entirely new OR setup after debridement and prior to the insertion of the new implant − 2 steps that are often mentioned as important to the success of single stage exchange. The pre-eminent role of two-stage exchange as the definitive treatment was established over 30 years ago. Two-stage exchange remains the gold-standard in treatment with an established track record from multiple centers and with multiple different types of infecting organisms. Some of the historical problems with two-stage exchange, such as limited mobility during the interval stage, have been mitigated with the development of effective articulating spacer techniques. Further, the emergence of drug resistant bacteria and the possibility of fungal infection make two-stage exchange the best choice for the majority of patients with deep periprosthetic joint infection in 2017


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 60 - 60
1 May 2019
Haddad F
Full Access

Periprosthetic joint infection (PJI) is a major complication affecting >1% of all total knee arthroplasties, with compromise in patient function and high rates of morbidity and mortality. There are also major socioeconomic implications. Diagnosis is based on a combination of clinical features, laboratory tests (including serum and articular samples) and diagnostic imaging. Once confirmed, prompt management is required to prevent propagation of the infection and further local damage. Non-operative measures include patient resuscitation, systemic antibiotics, and wound management, but operative intervention is usually required. Definitive surgical management requires open irrigation and debridement of the operative site, with or without exchange arthroplasty in either a single or two-stage approach. In all options, the patient's fitness, comorbidities and willingness for further surgery should be considered, and full intended benefits and complications openly discussed. Late infection almost invariably leads to implant removal but early infections and acute haematogenous infections can be managed with implant retention – the challenge is to retain the original implant, having eradicated infection and restored full function. Debridement with component retention: Open debridement is indicated for acute postoperative infections or acute haematogenous infections with previously well-functioning joints. To proceed with this management option the following criteria must be met: short duration of symptoms - ideally less than 2–3 weeks but up to 6; well-fixed and well-positioned prostheses; healthy surrounding soft tissues. Open debridement is therefore not an appropriate course of management if symptoms have been prolonged – greater than 6 weeks, if there is a poor soft tissue envelope and scarring, or if a revision arthroplasty would be more appropriate due to loosening or malposition of the implant. It is well documented in the literature that there is an inverse relationship between the duration of symptoms and the success of a debridement. It is thought that as the duration of symptoms increases, other factors such as patient comorbidities, soft tissue status and organism virulence play an increasingly important role in determining the outcome. There is a caveat. Based on our learning in the hip, when we see an acute infection where periprosthetic implants are used, it is much easier to use this time-limited opportunity to remove the implants and the associated biofilm and do a single-stage revision instead of just doing a debridement and a change of insert. This will clearly be experience and prosthesis-dependent but if the cementless implant is easy to remove, then it should be explanted. One critical aspect of this procedure is to use one set of instruments and drapes for the debridement and to then implant the new mobile parts and close using fresh drapes and clean instruments. Units that have gained expertise in single-stage revision will find this easier to do. After a debridement, irrigation, and change of insert, patients continue on intravenous antibiotics until appropriate cultures are available. Our multidisciplinary team and infectious disease experts then take over and will dictate antibiotic therapy thereafter. This is typically continued for a minimum of three months. Patients are monitored clinically, serologically, and particularly in relation to nutritional markers and general wellbeing. Antibiotics are stopped when the patients reach a stable level and are well in themselves. All patients are advised to re-present if they have an increase in pain or they feel unwell


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 75 - 75
1 Dec 2016
Berend M
Full Access

Implant selection in TKA remains highly variable. Surgeons consider preoperative deformity, surgical experience, retention or substitution for the PCL, type of articulation and polyethylene, and fixation with or without cement. We have most frequently implanted the same implant for the majority of patients. This is based on the fact that multiple large series of TKA's have demonstrated that the most durable TKA's have been non-modular metal backed tibial components, retention of the PCL, with a cemented all poly patellar component. The debate of how to handle the PCL continues. In most studies at 10 years there is little reported difference. Second decade concerns usually result from polyethylene issues related to polymer wear. Sagittal “dishing” or ultracongruent implants may be a middle road that allow PCL release or resection and controlled kinematics offering improved short term results. Long term function remains the goal and it appears a CR knee offers that capacity. Newer implants such as “high flex” and “gender” specific designs have not demonstrated significant functional improvements in controlled series. Uncemented knees in many series have performed well for many surgeons from a fixation standpoint. Polymer wear must be addressed for long term durability


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 60 - 60
1 Nov 2015
Pagnano M
Full Access

Deep periprosthetic infection after hip or knee arthroplasty is a disconcerting problem for patient and surgeon alike. The diagnosis of infection is sometimes obvious but frequently requires that the surgeon maintain a substantial index of suspicion for infection as the cause of pain or poor outcome after any joint arthroplasty. While surgical debridement with component retention is appropriate in a subgroup of patients with an acute periprosthetic infection most delayed and chronic infections are best treated with component resection. The pre-eminent role of two-stage exchange as the definitive treatment was established over 30 years ago. Two-stage exchange remains the gold-standard in treatment with an established track record from multiple centers and with multiple different types of infecting organisms. Some of the historical problems with two-stage exchange, such as limited mobility during the interval stage, have been mitigated with the development of effective articulating spacer techniques. Further, the emergence of drug resistant bacteria and the possibility of fungal infection make two-stage exchange the best choice for the majority of patients with deep periprosthetic joint infection in 2015


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 10 - 10
1 Dec 2016
McPherson E Czarkowski B McKinney B Dipane M
Full Access

Aim. Dissolvable antibiotic-loaded calcium sulphate beads have been utilized for management of periprosthetic joint infection (PJI) and for aseptic revision arthroplasty. However, wound drainage and toxic reactive synovitis have been substantial problems in prior studies. Currently a commercially pure, physiologic product has been introduced that may reduce complications associated with this treatment modality. We aim to answer the question: does a commercially pure, physiologic version of antibiotic-loaded calcium sulfate beads reduce wound drainage and provide efficacious treatment for PJI and aseptic revision arthroplasty?. Method. Starting January 2010, 756 consecutive procedures were performed utilizing a set protocol of Vancomycin and Tobramycin antibiotics in commercially pure dissolvable antibiotic beads. There were 8 designated study groups:. Aseptic Revision TKA. N = 216. Aseptic Revision THA. N = 185. DECRA. *. TKA. N = 44. DECRA. *. THA. N = 16. 1. st. Stage Resection TKA. N = 103. 1. st. Stage Resection THA. N = 62. Reimplant TKA. N = 81. Reimplant THA. N = 49. *. DECRA = Debridement, modular Exchange, Component Retention, iv Antibiotics for acute PJI. Results. Wound drainage in the entire series was 4.2%. Wound drainage was generally seen in cases using higher bead volumes (≥30cc). The rate of heterotopic ossification was 1.6%. With bead volumes of ≥30cc, we did notice transient hypercalcemia in 12% of the study group (14% hips, 10% knees). The overall rate of infection failure was 2.5%. In the DECRA groups, reinfection failure rate was encouraging, measuring 9.1% in knees and 6.3% in hips. The non-DECRA group with the highest infection rate was Reimplant TKA (6.2%). Conclusions. We utilized a large series of commercially pure dissolvable antibiotic-loaded beads in a wide variety of clinical scenarios in patients with substantial comorbidities. Our rate of wound drainage, compared to prior studies utilizing gypsum products, was reasonably good. Additionally, our infection failure rates were encouraging. Over-stuffing knee joints with too many beads, in our clinical review, does affect wound drainage rates. By removing impurities from calcium sulfate, we do not see the substantial toxic synovial reaction compared to the traditional gypsum-washed products. We feel that commercially pure, physiologic antibiotic-loaded dissolvable beads are an acceptable delivery tool for local antibiotic delivery in aseptic and septic revision joint arthroplasty of the hip and knee. In our opinion, further study is warranted. We advocate future randomized studies to examine the potential of improving outcomes of PJI and aseptic revision arthroplasty


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 149 - 149
1 Jan 2016
Li C Chang C Lo C
Full Access

Infection is a potentially disastrous complication of total knee arthroplasty (TKA). Although advances in surgical technique and antibiotic prophylaxis have reduced the incidence of infection to approximately 1% in primary TKA, there is still a substantial number of patients. Treatment options include antibiotic suppression, irrigation and debridement with component retention (with or without polyethylene exchange), one-stage or two-stage revision, resection arthroplasty and rarely arthrodesis or amputation. Salvage of prostheses has always been associated with low rates of success. It was reported a success rate of 27% for open debridement. It is suitable for selective cases where infection occurs within the first 4–6 weeks of primary TKA or in the setting of acute hematogenous gram positive infection with stable implants. With the advances in arthroscopic technique, arthroscopy after TKA has become an accepted method to assess and manage the complications of TKA. Arthroscopic treatment for infected TKA was reported and the successful rate was similar or better than open debridement in selected situations. We used arthroscopic debridement combined with continuous antibiotic irrigation and suction to treat acute presentation of infected TKA with acceptable result. From 2010∼2013, we has performed arthroscopic debridement and continuous antibiotic irrigation system for seven patients with infected TKA. All of the seven patients had no open wounds nor sinuses and no radiological evidence of prosthetic instability or evidence of osteomyelitis. Most of the surgical intervention was performed within two weeks from the onset of symptoms. Arthroscopic debridement was performed with a shaver using a multiportal technique (anterolateral, anteromedial, superolateral, superomedial, posterolateral, posteromedial) and a continuous antibiotic irrigation system was used to dilutes concentration of the causative microorganism and keep high local bactericidal concentration of antibiotics. We evaluated the efficacy by using follow up of the C-reactve protein (CRP) test, erythrocyte sedimentation rate (ESR) test and physical examination. Successful treatment was defined as prosthesis retention without recurrent infection by the final follow-up. Six of seven infected TKA were cured without recurrence at a mean follow-up of 23 months (range, 6–41 months). One case with rheumatoid arthritis under long-term steroid therapy had recurred after episode of upper respiratory tract infection for 3 times. However, the infection was controlled by arthroscopic debridement and retention of the prosthesis was achieved. We emphasize the importance of posterior portal to ensure adequate arthroscopic debridement. It is imperative to make early diagnosis and treatment for infected TKA. We should make more effort to preserve the prosthesis in acute infection(within 2 weeks). With the advantage of minimal morbidity, arthroscopic treatement shoulder be an alternative to open debridement


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 28 - 28
1 Feb 2017
Isaac S Khan R Fick D Gunaratne R Haebich S
Full Access

Introduction. The risk of hip dislocation after revision total hip arthroplasty is up to 20% following surgery for periprosthetic fractures. A technique was developed by the senior authors, involving a transtrochanteric osteotomy and superior capsulotomy to attempt to minimise this risk(1). Methods. This prospective study examines a cohort of 40 patients undergoing this novel technique, which involves extending the fracture proximally to the tip of the greater trochanter. This is then extended into the soft tissues in the mid lateral plane as a split of the glutei and a minimally superior capsulotomy (preserving the anterior and posterior capsule). This allows for revision of the femoral component, and retention of the socket and liner. The outcomes of interest to the authors were dislocation rates, clinical outcome measured using the Oxford hip score. These were assessed along with X-ray imaging at 1, 2 and 5-year intervals to confirm fracture union and measure stem subsidence. Results. Patients averaged 80 years of age, with a higher ratio of females (3:2). There were no cases of hip joint dislocations. Two patients (5%) underwent subsequent revision hip arthroplasty within the first 12 months of initial revision. Femoral stem subsidence at 1 year averaged 5.9 mm. All fractures showed radiological evidence of union. The Oxford hip score was fair, averaging 31/48 by 1 year post-op, and then plateaued at 32.8/48 at 2 years post-op. Conclusion. 5 year follow-up of this novel operative technique in revision arthroplasty of Vancouver B periprosthetic hip fractures has confirmed the benefits, with no cases of hip dislocation, along with overall satisfactory patient clinical outcomes