Reoperation on the acetabular side of the total hip arthroplasty construct because of acetabular liner wear with or without extensive osteolysis is the most common reoperation performed in revision hip surgery today. The options of revision of the component or
Vancouver A: If minimal displacement and prosthesis stable can treat nonoperatively. If displacement is unacceptable and/or osteolysis is present consider surgery. AL: Rare, avulsions from osteopenia and lysis. If large, displaced and include large portion of calcar-can destabilise stem and prompt femoral revision. AG: More common. Often secondary to lysis. Does not usually affect implant stability. Minimal displacement. Treat closed × 3 months. Revise later is needed to remove the particle generator, debride defects and bone graft. Displaced with good host bone stock. Consider early ORIF and bone grafting. Vancouver B:. B1: Rarely non-operative. ORIF with femoral
Introduction. Acute infection following Total Hip Arthroplasty (THA) is a serious complication. It is commonly treated by irrigation and debridement (I&D) with
Implant selection in TKA remains highly variable. Surgeons consider pre-operative deformity, patient factors such as BMI and bone quality, surgical experience, retention or substitution for the PCL, type of articulation and polyethylene, cost, and fixation with or without cement. We have most frequently implanted the same implant for the majority of patients. This is based on the fact that multiple large series of TKAs have demonstrated that the most durable TKAs have been non-modular metal-backed tibial
Deep peri-prosthetic infection after partial or total knee arthroplasty is a disconcerting problem for patient and surgeon alike. The diagnosis of infection is sometimes obvious but frequently requires that the surgeon maintain a substantial index of suspicion for infection as the cause of pain or poor outcome after any joint arthroplasty. While surgical debridement with
Periprosthetic joint infection (PJI) is a major complication affecting >1% of all total knee arthroplasties, with compromise in patient function and high rates of morbidity and mortality. There are also major socioeconomic implications. Diagnosis is based on a combination of clinical features, laboratory tests (including serum and articular samples) and diagnostic imaging. Once confirmed, prompt management is required to prevent propagation of the infection and further local damage. Non-operative measures include patient resuscitation, systemic antibiotics, and wound management, but operative intervention is usually required. Definitive surgical management requires open irrigation and debridement of the operative site, with or without exchange arthroplasty in either a single or two-stage approach. In all options, the patient's fitness, comorbidities and willingness for further surgery should be considered, and full intended benefits and complications openly discussed. Late infection almost invariably leads to implant removal but early infections and acute haematogenous infections can be managed with implant retention – the challenge is to retain the original implant, having eradicated infection and restored full function. Debridement with
Implant selection in TKA remains highly variable. Surgeons consider preoperative deformity, surgical experience, retention or substitution for the PCL, type of articulation and polyethylene, and fixation with or without cement. We have most frequently implanted the same implant for the majority of patients. This is based on the fact that multiple large series of TKA's have demonstrated that the most durable TKA's have been non-modular metal backed tibial
Deep periprosthetic infection after hip or knee arthroplasty is a disconcerting problem for patient and surgeon alike. The diagnosis of infection is sometimes obvious but frequently requires that the surgeon maintain a substantial index of suspicion for infection as the cause of pain or poor outcome after any joint arthroplasty. While surgical debridement with
Aim. Dissolvable antibiotic-loaded calcium sulphate beads have been utilized for management of periprosthetic joint infection (PJI) and for aseptic revision arthroplasty. However, wound drainage and toxic reactive synovitis have been substantial problems in prior studies. Currently a commercially pure, physiologic product has been introduced that may reduce complications associated with this treatment modality. We aim to answer the question: does a commercially pure, physiologic version of antibiotic-loaded calcium sulfate beads reduce wound drainage and provide efficacious treatment for PJI and aseptic revision arthroplasty?. Method. Starting January 2010, 756 consecutive procedures were performed utilizing a set protocol of Vancomycin and Tobramycin antibiotics in commercially pure dissolvable antibiotic beads. There were 8 designated study groups:. Aseptic Revision TKA. N = 216. Aseptic Revision THA. N = 185. DECRA. *. TKA. N = 44. DECRA. *. THA. N = 16. 1. st. Stage Resection TKA. N = 103. 1. st. Stage Resection THA. N = 62. Reimplant TKA. N = 81. Reimplant THA. N = 49. *. DECRA = Debridement, modular Exchange,
Infection is a potentially disastrous complication of total knee arthroplasty (TKA). Although advances in surgical technique and antibiotic prophylaxis have reduced the incidence of infection to approximately 1% in primary TKA, there is still a substantial number of patients. Treatment options include antibiotic suppression, irrigation and debridement with
Introduction. The risk of hip dislocation after revision total hip arthroplasty is up to 20% following surgery for periprosthetic fractures. A technique was developed by the senior authors, involving a transtrochanteric osteotomy and superior capsulotomy to attempt to minimise this risk(1). Methods. This prospective study examines a cohort of 40 patients undergoing this novel technique, which involves extending the fracture proximally to the tip of the greater trochanter. This is then extended into the soft tissues in the mid lateral plane as a split of the glutei and a minimally superior capsulotomy (preserving the anterior and posterior capsule). This allows for revision of the femoral