Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 372 - 372
1 Sep 2012
Bainbridge C Houston A Jones G Milner R Wilbrand S
Full Access

Introduction. In Europe, injectable collagenase clostridium histolyticum (CCH) is a novel, minimally invasive, non-surgical therapy with efficacy in correcting Dupuytren's contracture (DC). We evaluated the efficacy and tolerability of 5 CCH injections using a protocol designed to follow clinical practice. Methods. This was a 20-center, 9-month, open-label study in which DC patients with primary flexion deformities 20° (100° for MP; 80° for PIP) received 3 CCH (0.58 mg) injections/joint (5 injections/patient) at 30-day intervals. The primary endpoint was clinical success, defined as a reduction in contracture to 5° 30 days after the last injection (“Day 30”). After first injection into a prioritized joint, patients opted to receive up to 2 more injections into the same cord or cords from other affected joints whether or not they achieved clinical success with the first joint. Adverse events (AEs) were monitored. Results. For the primary endpoint, 71% of MP (n=343) and 41% of PIP (n=244) joints showed a reduction in contracture to 5° with CCH injections. Of joints that did not achieve clinical success, 66% of MP (n=100) and 38% of PIP joints (n=144) showed 50% reduction in contracture after CCH. For range of motion (ROM), mean±SD increase from baseline to Day 30 was 33.0±16.2° for MP and 27.5±18.5° for PIP joints. Most commonly reported AEs were localized edema, bruising, pain, swelling, and tenderness; most resolved without intervention. Two serious AEs, deep vein thrombosis in the leg and tendonitis with partial tendon/ligament injury, were deemed possibly and probably related to treatment, respectively. Conclusions. Results from this open-label study, designed to follow clinical practice, provide support for the efficacy of CCH in correcting the flexion deformity of MP/PIP joints caused by DC. Clinical success and ROM improvements were comparable to those observed in randomized, placebo-controlled trials. This study was funded by Auxilium Pharmaceuticals, Inc


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 517 - 524
1 Apr 2011
Cox G McGonagle D Boxall SA Buckley CT Jones E Giannoudis PV

The scarcity of mesenchymal stem cells (MSCs) in iliac crest bone marrow aspirate (ICBMA), and the expense and time in culturing cells, has led to the search for alternative harvest sites. The reamer-irrigation-aspirator (RIA) provides continuous irrigation and suction during reaming of long bones. The aspirated contents pass via a filter, trapping bony fragments, before moving into a ‘waste’ bag from which MSCs have been previously isolated. We examined the liquid and solid phases, performed a novel digestion of the solid phase, and made a comparative assessment in terms of number, phenotype and differentiation capacity with matched ICBMA. The solid fraction from the filtrate was digested for 60 minutes at 37°C with collagenase. Enumeration was performed via the colony-forming unit fibroblast (CFU-F) assay. Passage (P2) cells were differentiated towards osteogenic, adipogenic and chondrogenic lineages, and their phenotypes assessed using flow cytometry (CD33, CD34, CD45, CD73, CD90, and CD105). MSCs from the RIA phases were able to differentiate at least as well as those from ICBMA, and all fractions had phenotypes consistent with other established sources. The median number of colonies for the three groups was: ICBMA = 8.5 (2 to 86), RIA-liquid = 19.5 (4 to 90), RIA-solid = 109 (67 to 200) per 200 μl. The mean total yield of cells for the three groups was: ICBMA = 920 (0 to 4275), RIA-liquid = 114 983 (16 500 to 477 750), RIA-solid = 12 785 (7210 to 28 475). The RIA filtrate contains large numbers of MSCs that could potentially be extracted without enzymatic digestion and used for bone repair without prior cell expansion


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 453 - 453
1 Sep 2012
Cox G Giannoudis P Boxall S Buckley C Mcgonagle D Jones E
Full Access

Introduction. Iliac crest bone marrow aspirate (ICBMA) is frequently cited as the ‘gold-standard’ source of MSCs. Mesenchymal stem cells have been shown to reside within the intramedullary (IM) cavities of long-bones and a comparative assessment with ICBMA has not yet been performed. Methods. Aspiration of the IM cavities of 6 patients' femurs with matched ICBMA was performed. The long-bone-fatty-bone-marrow (LBFBM) aspirated was filtered (70μm) and the solid fraction digested for 60min (37°C) with collagenase. Enumeration was performed via the colony-forming-unit-fibroblast (CFU-F) assay and using the CD45low CD271+ phenotype via flow-cytometry. Passaged (P2) cells were differentiated towards osteogenic, adipogenic and chondrogenic lineages with their phenotype assessed using flow-cytometry CD33 CD34 CD45 CD73 CD90 CD105. Results. MSCs were isolated from all fractions. Using the CFU-F assay median number of colonies: ICBMA=8 (2–21), LBFBM-liquid=14 (0–53), LBFBM-solid=116 (23–171) per 200μl of sample; MSC frequency, as percentage of total cells, using flow-cytometry, provided similar results. Mesenchymal stem cells isolated from the LBFBM phases appeared to not be inferior to ICBMA in terms of osteogenic, chondrogenic or adipogenic differentiation. Passaged cells from all fractions had a phenotype consistent with other reported sources. Discussion. Intra-medullary cavities of long-bones are frequently accessed by the orthopaedic/trauma surgeon. This represents a ‘low-tech’ method of harvesting large numbers of MSCs with a favourable differentiation profile for autologous/allogenous uses


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_25 | Pages 13 - 13
1 May 2013
Ahmed I Stewart C Suleman-Verjee L Hooper G Davidson D
Full Access

There has been recent interest in the treatment of Dupuytren's disease by minimally invasive techniques such as needle fasciotomy and collagenase injection, but only few studies have reported the outcomes following open fasciotomy. This study attempts to address this gap, with a retrospective analysis of a large series of patients who underwent an open fasciotomy by a single surgeon over a five-year period. The aim of the study was to determine the requirement for re-operation in the cohort and to analyse the revisionary procedures performed. Theatre coding data was used to identify a consecutive series of patients who underwent open fasciotomy over a five-year period between 2000 and 2005. Within this group medical records were obtained for those patients who underwent a secondary procedure for recurrence. All procedures were carried out by a single surgeon in a regional hand unit using an unmodified open technique. A total of 1077 patients underwent open fasciotomy for Dupuytren's disease. Of these, 865 (80.3%) were male and 212 (19.7%) were female. The mean age at initial surgery was 64.4 years (range 21.7 to 93.7 years) for males and 68.3 (range 43.6 to 89.8 years) for females. Of the 1077 patients who underwent open fasciotomy, 143 patients (13.3%) subsequently underwent a second procedure for recurrence. The medical records were available for 97 patients. The median time to re-operation in this group of patients was 42.0 months (95% CI, 8.3 to 98.0 months). The most common revision procedure being dermofasciectomy (54.2%), followed by fasciectomy (32.6%) and re-do open fasciotomy (13.2%). Mean pre-operative total extension deficit was 88 degrees (range 30–180 degrees) with intra-operative correction to a mean of 9.5 degrees (range 0–45 degrees). There is no standard definition for recurrence after Dupuytren's surgery. We have looked at the rate of revision surgery after open fasciotomy, in a relatively fixed population serviced over a 5-year period by a single hand surgeon. A low re-operation rate has been identified, with good intra-operative correction achieved by secondary surgery


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 197 - 197
1 Sep 2012
Benazzo F Gastaldi G Fontana J Marullo M
Full Access

Engineered bone tissue to recreate the continuity of damaged skeletal segments is one of the field of interest of tissue engineering. Trabecular titanium has very good mechanical properties and high in vitro and in vivo biocompatibility: it can be used in biomedical applications to promote osteointegration demonstrating that it can be successfully used for regenerative medicine in orthopaedic surgery (1). Purpose of this investigation was to evaluate the behavior of adipose tissue derived stem cells (hASCs) cultured on scaffolds of Trabecular TitaniumTM (Lima-Lto) (TT). hASCs are considered to be multipotent mesenchymal stem cells that are easily induced to differentiate into functional osteoblasts both in vitro and in vivo (2). The hASCs were obtained from the subcutaneous adipose tissue of healthy donors during total hip replacement procedures after digestion with collagenase. They were seeded on monolayer and on the TT scaffolds, and incubated at 37 degrees C in 5% CO2 with osteogenic medium or control medium. The expression of bone-related genes using RT-PCR, time course of alkaline phosphatase activity and morphological investigation with Scanning Electron Microscopy (SEM) were performed to evaluate the osteogenic differentiation of hASCs. Alkaline phosphatase activity, marker of the differentiation toward the osteogenic pattern, was significantly higher in hASCs grown with osteogenic medium than in cells grown with control medium, both in monolayer and TT scaffolds; moreover, also alkaline phosphatase of hASCs grown on TT scaffolds in the presence of control medium increased with time, differently from that of cells grown on monolayer. The osteogenic differentiated hASCs expressed the bone-related genes type I collagen, osteocalcin, Runx-2 and alkaline phosphatase. SEM observations showed that hASCs differentiated toward osteoblast-like cells: they produced a big amount of extracellular matrix that covered the surface of the porous scaffolds with bridges between the pore walls. These data suggest that hASCs are able to adhere to TT scaffolds, to acquire an osteoblastic phenotype and to produce abundant extracellular matrix, with but also without osteogenic medium. We can therefore conclude that this material carries osteinductive properties being responsible of ostegenic differentiation; consequently, this scaffold/cells construct is effective to regenerate damaged tissue and to restore the function of bone tissue


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 455 - 455
1 Sep 2012
Cox G Mcgonagle D Boxall S Buckley C Jones E Giannoudis P
Full Access

Introduction. MSCs have long promised benefits of synthesising bone/cartilage, treating non-unions and potentially accelerating fracture repair. This potential has been tempered by MSC scarcity in the ‘gold-standard’ iliac crest bone marrow aspirate (ICBMA) and the resulting need to expand numbers via cell-culture. Culture of MSCs is time-consuming, expensive and results in cells with a reduced differentiation capacity. The reamer-irrigator-aspirator (RIA) is an innovation designed to reduce intra-medullary (IM) pressures during reaming of long-bones via continuous irrigation and suction. Aspirated contents are passed via a coarse filter, which traps bony-fragments before moving into a ‘waste’ bag - from which MSCs have been previously isolated. We examined liquid and solid phases found in this ‘waste’, performed a novel digestion of the solid phase and made a comparative assessment in terms of number, phenotype and differentiation capacity with matched ICBMA. Methods. The filtrate ‘waste’ bag from RIA reaming (6 patients) was filtered (70μm) and the solid fraction digested for 60min (37°C) with collagenase. MSCs were isolated from liquid & solid fractions and from 10ml matched ICBMA. Enumeration of MSCs was achieved via colony-forming-unit-fibroblast (CFUF) assay and flow-cytometry on fresh sample using CD45low, CD271+. MSCs were cultured by virtue of their plastic adherence and passaged in standard, non-haematopoietic media. Passage (P2) cells were differentiated towards osteogenic, adipogenic and chondrogenic lineages with their phenotype assessed with flow cytometry CD33 CD34 CD45 CD73 CD90 CD105. Results. We found MSCs were in all fractions/patients. Using the CFU-F assay median number of colonies: ICBMA=8 (2–21), RIA-liquid=12 (4–41), RIA-solid=115 (67–200) per 200μl of sample. Total yield of cells was calculated from volume of sample: ICBMA=670 (228–4275), RIA-liquid=39000 (16500–83700), RIA-solid=9400 (7210–28475). MSC frequency as a percentage of total cells using flow-cytometry on fresh sample found similar frequencies. MSCs isolated from the RIA phases differentiated into osteogenic, chondrogenic and adipogenic lineages at least as well as ICBMA. Passaged (P2) cells, from all fractions/patients, had a phenotype consistent with other reported sources. Discussion. The RIA filtrate bag is typically discarded at operation. These results show that this ‘waste’ represents a significant source of MSCs that could be isolated for autologous/allogenous use. Concentration of the liquid-phase/brief enzymatic digestion of the solid-phase offers the possibility of large numbers of MSCs being obtained without/with minimal culture expansion