Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 57 - 57
1 Jul 2020
Grant M Mwale F Antoniou J Bergeron S Karaplis A Panda D
Full Access

Osteoarthritis (OA) is a debilitating disease and the most common joint disorder worldwide. Although the development of OA is considered multifactorial, the mechanisms underlying its initiation and progression remain unclear. A prominent feature in OA is cartilage degradation typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II). Cartilage homeostasis is maintained by the anabolic and catabolic activities of chondrocytes. Prolonged exposure to stressors such as mechanical loading and inflammatory cytokines can alter the phonotype of chondrocytes favoring cartilage catabolism, and occurs through decreased matrix protein synthesis and upregulation of catabolic enzymes such as aggrecanases (ADAMTS-) 4 and 5 and matrix metalloproteinases (MMPs). More recently, the endoplasmic reticulum (ER) stress response has been implicated in OA. The ER-stress response protects the cell from misfolded proteins however, excessive activation of this system can lead to chondrocyte apoptosis. Acute exposure of chondrocytes to IL-1β has been demonstrated to upregulate ER-stress markers (GADD153 and GRP78), however, it is unclear whether the ER-stress response plays a role on chronic IL-1β exposure. The purpose of this study was to determine whether modulating the ER stress response with tauroursodeoxycholic acid (TUDCA) in human OA chondrocytes during prolonged IL-1β exposure can alter its catabolic effects. Articular cartilage was isolated from donors undergoing total hip or knee replacement. Chondrocytes were recovered from the cartilage of each femoral head or knee by sequential digestion with Pronase followed by Collagenase, and expanded in DMEM-low glucose supplemented with 10% FBS. Chondrocytes were expanded in flasks for one passage before being prepared for micropellet culture. Chondrocyte pellets were cultured in regular growth medium (Control), medium supplemented with IL-1β [10 ng/mL], TUDCA [100 uM] or IL-1β + TUDCA for 12 days. Medium was replaced every three days. Cartilage explants were prepared from the donors undergoing knee replacement, and included cartilage with the cortical bone approximately 1 cm2 in dimension. Explants were cultured in the above mentioned media, however, the incubation period was extended to 21 days. RNA was extracted using Geneaid RNA Mini Kit for Tissue followed by cDNA synthesis. QPCR was performed using Cyber Green mastermix and primers for the following genes: ACAN (aggreacan), COL1A1, COL2A1, COL10A1, ADAMTS-4, ADAMTS-5, MMP-3, and MMP-13, on an ABI 7500 fast qPCR system. Although IL-1β did not significantly decrease the expression of matrix proteins, it did increase the expression of ADAMTS-4, −5, and MMP3 and −13 when compared to controls (Kruskal-Wallis, p < 0 .05, n=3). TUDCA treatment alone did not significantly increase the expression of catabolic enzymes but it did increase the expression of collagen type II. When IL-1β was coincubated with TUDCA, the expression of ADAMTS-4, ADAMTS-5, and MMP-13 significantly decreased by ∼40-fold, ∼10-fold, and ∼3-fold, respectfully. We provide evidence that the catabolic activities of IL-1β on human cartilage can be abrogated through modulation of the ER stress response


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 135 - 135
1 May 2012
Tetsunaga T Furumatsu T Abe N Ozaki T Naruse K Nishida K
Full Access

Biomechanical stimuli have fundamental roles in the maintenance and remodeling of ligaments including collagen gene expressions. Mechanical stretching signals are mainly transduced by cell adhesion molecules such as integrins. However, the relationships between stress-induced collagen expressions and integrin-mediated cellular behaviors are still unclear in anterior cruciate ligament cells. Human ACL cells were harvested from ligament samples donated by patients who underwent total knee arthroplasties with informed consents. Interface cells were isolated from the 5-mm-end of ACL. Midsubstance cells were cultured from the middle part of ACL. The cells were seeded onto stretch chambers (2Ä−2 cm, 50,000 cells/chamber) and uni-axial cyclic mechanical stretch (0.5 Hz, 7%) was applied for 2 h using a ST140. RNA samples were reverse-transcripted and quantitative real-time RT-PCR analysis were performed. To inhibit the function of integrin alphaVbeta3 subunit or alpha5 in stretching experiments, anti-human integrin alphaVbeta3 and alpha5 functional blocking antibodies (alphaVbeta3: 20 mg/ml, alpha5: 4 mg/ml) were used. To investigate the cellular attachments responding to mechanical stretch, we observed the distribution of integrins and stress fibers in both ACL cells. The shape of midsubstance cells showed spindle and fibroblastic cellular morphologies. On the other hand, the interface cells displayed chondroblastic appearances such as small and triangular morphologies. The expressions of COL1A1, COL2A1, and COL3A1 genes were detected in the tissue RNAs of interface zones. However, these expressions were decreased in cultured interface cells. In midsubstance cells, the expression of COL1A1 gene was equally detected in both tissues and cultured cells. COL3A1 gene expression was maintained in cultured midsubstance cells. These results indicated that the phenotypes of both ACL cells were changed by cultured conditions, especially in the interface cells. After mechanical stretch, the COL1A1 expression of midsubstance and interface cells were stimulated up to 6 and 14-fold levels of each non-stretched control, respectively. The COL3A1 expressions were also enhanced up to 1.8-fold level of controls by stretching treatment in both cells. Integrin alphaVbeta3 was shifted to the peripheral edge of cells by stretching treatment. In addition, mechanical stretch changed the integrin alphaVbeta3-dependent stress fiber formation in both ACL cells. The functional blocking of integrin alphaVbeta3 inhibited stretch-activated COL1A1 and COL3A1 expressions. However, the functional blocking of integrin alpha5 did not suppress the stretch-induced COL1A1 and COL3A1 expressions in both ACL cells. Cultured interface cells loose their phenotypes in collagen gene expressions. However, mechanical stretch reproduces the expression of COL1A1 and COL3A1 genes in cultured ACL cells. The present study demonstrated that stretch-activated collagen gene expressions depend on the integrin alphaVbeta3-mediated cellular adhesions