Advances in treatment have extended the life expectancy of patients with metastatic bone disease (MBD). Patients could experience more skeletal-related events (SREs) as a result of this progress. Those who have already experienced a SRE could encounter another local management for a subsequent SRE, which is not part of the treatment for the initial SRE. However, there is a noted gap in research on the rate and characteristics of subsequent SREs requiring further localized treatment, obligating clinicians to extrapolate from experiences with initial SREs when confronting subsequent ones. This study aimed to investigate the proportion of MBD patients developing subsequent SREs requiring local treatment, examine if there are prognostic differences at the initial treatment between those with single versus subsequent SREs, and determine if clinical, oncological, and prognostic features differ between initial and subsequent SRE treatments. This retrospective study included 3,814 adult patients who received local treatment – surgery and/or radiotherapy – for bone metastasis between 1 January 2010 and 31 December 2019. All included patients had at least one SRE requiring local treatment. A subsequent SRE was defined as a second SRE requiring local treatment. Clinical, oncological, and prognostic features were compared between single SREs and subsequent SREs using Mann-Whitney U test, Fisher’s exact test, and Kaplan–Meier curve.Aims
Methods
Treatment of high-grade limb bone sarcoma that invades a joint requires en bloc extra-articular excision. MRI can demonstrate joint invasion but is frequently inconclusive, and its predictive value is unknown. We evaluated the diagnostic accuracy of direct and indirect radiological signs of intra-articular tumour extension and the performance characteristics of MRI findings of intra-articular tumour extension. We performed a retrospective case-control study of patients who underwent extra-articular excision for sarcoma of the knee, hip, or shoulder from 1 June 2000 to 1 November 2020. Radiologists blinded to the pathology results evaluated preoperative MRI for three direct signs of joint invasion (capsular disruption, cortical breach, cartilage invasion) and indirect signs (e.g. joint effusion, synovial thickening). The discriminatory ability of MRI to detect intra-articular tumour extension was determined by receiver operating characteristic analysis.Aims
Methods
To assess the correlation between the histological response to preoperative chemotherapy and event-free survival (EFS) or overall survival (OS) in patients with high-grade localized osteosarcoma. Out of 625 patients aged ≤ 40 years treated for primary high-grade osteosarcoma between 1997 and 2016, 232 patients without clinically detectable metastases at the time of diagnosis and treated with preoperative high-dose methotrexate, adriamycin and cisplatin (MAP) chemotherapy and surgery were included. Associations of chemotherapy-induced necrosis in the resected specimen and EFS or OS were assessed using Cox model and the Pearson’s correlation coefficients (r). Time-dependent receiver operating characteristic analysis was applied to determine the optimal cut-off value of chemotherapy-induced necrosis for EFS and OS.Aims
Methods
Accurate estimations of the risk of fracture due to metastatic bone disease in the femur is essential in order to avoid both under-treatment and over-treatment of patients with an impending pathological fracture. The purpose of the current retrospective in vivo study was to use CT-based finite element analyses (CTFEA) to identify a clear quantitative differentiating factor between patients who are at imminent risk of fracturing their femur and those who are not, and to identify the exact location of maximal weakness where the fracture is most likely to occur. Data were collected on 82 patients with femoral metastatic bone disease, 41 of whom did not undergo prophylactic fixation. A total of 15 had a pathological fracture within six months following the CT scan, and 26 were fracture-free during the five months following the scan. The Mirels score and strain fold ratio (SFR) based on CTFEA was computed for all patients. A SFR value of 1.48 was used as the threshold for a pathological fracture. The sensitivity, specificity, positive, and negative predicted values for Mirels score and SFR predictions were computed for nine patients who fractured and 24 who did not, as well as a comparison of areas under the receiver operating characteristic curves (AUC of the ROC curves).Aims
Methods
The aim of this study was to validate the Mirels score in predicting
pathological fractures in metastatic disease of the lower limb. A total of 62 patients with confirmed metastatic disease met
the inclusion criteria. Of the 62 patients, 32 were female and 30
were male. The mean age of patients was 65 years (35 to 89). The
primary malignancy originated from the breast in 27 (44%) patients,
prostate in 15 (24%) patients, kidney in seven (11%), and lung in
four (6%) of patients. One patient (2%) had metastatic carcinoma
from the lacrimal gland, two patients (3%) had multiple myeloma,
one patient (2%) had lymphoma of bone, and five patients (8%) had
metastatic carcinoma of unknown primary. Plain radiographs at the
time of initial presentation were scored using Mirels system by
the four authors. The radiographic components of the score (anatomical
site, size, and radiographic appearance) were scored two weeks apart.
Inter- and intraobserver reliability were calculated with Fleiss’
kappa test. Bland-Altman plots were created to compare the variances
of the individual components of the score and the total Mirels score.Aims
Patients and Methods
Previously, we showed that case-specific non-linear
finite element (FE) models are better at predicting the load to failure
of metastatic femora than experienced clinicians. In this study
we improved our FE modelling and increased the number of femora
and characteristics of the lesions. We retested the robustness of
the FE predictions and assessed why clinicians have difficulty in
estimating the load to failure of metastatic femora. A total of
20 femora with and without artificial metastases were mechanically
loaded until failure. These experiments were simulated using case-specific
FE models. Six clinicians ranked the femora on load to failure and
reported their ranking strategies. The experimental load to failure
for intact and metastatic femora was well predicted by the FE models (R2 =
0.90 and R2 = 0.93, respectively). Ranking metastatic
femora on load to failure was well performed by the FE models (τ =
0.87), but not by the clinicians (0.11 <
τ <
0.42). Both the
FE models and the clinicians allowed for the characteristics of
the lesions, but only the FE models incorporated the initial bone
strength, which is essential for accurately predicting the risk
of fracture. Accurate prediction of the risk of fracture should
be made possible for clinicians by further developing FE models.