The primary outcome was investigating differences in wear, as measured by femoral head penetration, between cross-linked vitamin E-diffused polyethylene (vE-PE) and cross-linked polyethylene (XLPE) acetabular component liners and between 32 and 36 mm head sizes at the ten-year follow-up. Secondary outcomes included acetabular component migration and patient-reported outcome measures (PROMs) such as the EuroQol five-dimension questionnaire, 36-Item Short-Form Health Survey, Harris Hip Score, and University of California, Los Angeles Activity Scale (UCLA). A single-blinded, multi-arm, 2 × 2 factorial randomized controlled trial was undertaken. Patients were recruited between May 2009 and April 2011. Radiostereometric analyses (RSAs) were performed from baseline to ten years. Of the 220 eligible patients, 116 underwent randomization, and 82 remained at the ten-year follow-up. Eligible patients were randomized into one of four interventions: vE-PE acetabular liner with either 32 or 36 mm femoral head, and XLPE acetabular liner with either 32 or 36 mm femoral head. Parameters were otherwise identical except for acetabular liner material and femoral head size.Aims
Methods
The primary aim of this trial was to compare the subsidence of two similar hydroxyapatite-coated titanium femoral components from different manufacturers. Secondary aims were to compare rotational migration (anteversion/retroversion and varus/valgus tilt) and patient-reported outcome measures between both femoral components. Patients were randomized to receive one of the two femoral components (Avenir or Corail) during their primary total hip arthroplasty between August 2018 and September 2020. Radiostereometric analysis examinations at six, 12, and 24 months were used to assess the migration of each implanted femoral component compared to a baseline assessment. Patient-reported outcome measures were also recorded for these same timepoints. Overall, 50 patients were enrolled (62% male (n = 31), with a mean age of 65.7 years (SD 7.3), and mean BMI of 30.2 kg/m2 (SD 5.2)).Aims
Methods
Background. The purpose of this multicenter, randomized
Traditional mechanical debridement can only remove visibly infected tissue and is unable to completely clear all the biofilm that hides within muscle crevices and nerves. This study aims to determine the results of single-stage revision using noncontact low frequency ultrasonic debridement in treating chronic periprosthetic joint infections (PJI). A prospective study of consecutive patients requiring single-stage revision for chronic PJI was performed since August 2021. After mechanical debridement, an 8‑mm handheld non‑contact low‑frequency ultrasound probe was used for ultrasonic debridement at a frequency of (25±5) kHz and power of 90% for 5 minutes. Each ultrasound lasted 10 seconds with 3‑seconds intervals. The probe was repeatedly sonicated among all soft tissue and bsingle interface. The distal femoral canal and the posterior capsule of the knee were fully sonicated with a special right‑angle probe. Chemical debridement was then performed to irrigation the whole operative area. Recurrence of infection, culture results and number of colonies 24 hours after ultrasonic debridement were recorded. A total of 45 patients (25 hips and 20 knees) were included and 43 of them (95.6%) were free of infection at a mean follow-up time of 29 months (24 to 33). There were no intraoperative complications related to ultrasonic debridement (neurovascular and muscle injury, poor wound healing and fat liquefaction). The culture‑positive rate of wound liquid before ultrasonic debridement was 40.0% (18/45), which significantly increased to 75.6% (34/45) after ultrasonic debridement (P=0.001). The median number of colonies 24 hours after ultrasonic debridement was 2372 CFU/ml (310 to 4340 CFU/ml), which was significantly higher than that before debridement (307 CFU/ml; 10 to 980 CFU/ml) (P=0.000). Single-stage revision with non‑contact low‑frequency ultrasonic debridement can fully expose bacteria within biofilm, increase the efficacy of chemical debridement and lead to a favorable short‑term outcome without related complications.
Surgical treatment of hip fracture is challenging; the bone is porotic and fixation failure can be catastrophic. Novel implants are available which may yield superior clinical outcomes. This study compared the clinical effectiveness of the novel X-Bolt Hip System (XHS) with the sliding hip screw (SHS) for the treatment of fragility hip fractures. We conducted a multicentre, superiority, randomized controlled trial. Patients aged 60 years and older with a trochanteric hip fracture were recruited in ten acute UK NHS hospitals. Participants were randomly allocated to fixation of their fracture with XHS or SHS. A total of 1,128 participants were randomized with 564 participants allocated to each group. Participants and outcome assessors were blind to treatment allocation. The primary outcome was the EuroQol five-dimension five-level health status (EQ-5D-5L) utility at four months. The minimum clinically important difference in utility was pre-specified at 0.075. Secondary outcomes were EQ-5D-5L utility at 12 months, mortality, residential status, mobility, revision surgery, and radiological measures.Aims
Methods
115 patients undergoing primary unilateral THA were randomized to either DAA or MPA. Groups did not differ in mean age, sex, or mean body mass index. Functional results included time to discontinue gait aids, discontinue all narcotics, and independence with various activities of daily living. Activity in study subjects was measured with 5 wearable activity monitoring sensors with tri-axial MEMS accelerometers and validated custom algorithms and conducted over three days at pre-op, 2 weeks, 8 weeks, and one year. SF-12, WOMAC, and HHS scores to one year were also tabulated. Early functional recovery slightly favoured DAA compared to MPA; time to discontinue walker (10 vs. 14.5 days), time to discontinue all gait aids (17.3 vs 23.6 days), ascend stairs with gait aid (5.4 vs. 10.3 days), and to walk 6 blocks (20.5 vs. 26.0 days). There were no other differences in early functional milestones. Activity monitoring at two weeks postoperatively slightly favoured DAA; mean steps per day were 3897 versus MPA 2,235, percent of day active, DAA 10.5% versus MPA 6.9%. There was no difference in activity monitoring pre-operatively, at two months, or at one year. There was no difference at one year with the SF-12. There was no difference in the SF-12 mental component or the HOOS at any time point. There was no loosening or subsidence of any of the components in any hip. Both the direct anterior and posterior approach provided excellent early postoperative recovery with a low complication rate. The direct anterior patients had slightly faster recovery than the mini-posterior approach patients, with slightly shorter times to achieve milestones of function and as measured by advanced, quantitative activity monitoring at 2 weeks postoperatively.
The painful hip without obvious clinical or radiographic signs of complications is a well-known scenario for surgeons. The clinical tools we have access to currently lack a dynamic test for detecting early signs of motion between implant and bone. A new software, Sectra IMA, has a potential to facilitate diagnosis of early implant loosening by analysis of paired CT exams. In clinical practise the two scans are acquired by endpoint of a possible motion, “a provocation CT”, for example maximal external and internal rotation in a CT hip examination. 20 years of research by Olivecrona and Weidenhielm is the scientific background for the technique. Early results are presented by Sandberg et al 2022. To further validate and create clinical evidence more extensive
Aims. Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs). Methods. A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39
Aims. Periprosthetic hip-joint infection is a multifaceted and highly detrimental outcome for patients and clinicians. The incidence of prosthetic joint infection reported within two years of primary hip arthroplasty ranges from 0.8% to 2.1%. Costs of treatment are over five-times greater in people with periprosthetic hip joint infection than in those with no infection. Currently, there are no national evidence-based guidelines for treatment and management of this condition to guide clinical practice or to inform
Elevated blood cobalt secondary to metal-on-metal (MoM) hip arthroplasties has been shown to be a risk factor for developing cardiovascular complications including cardiomyopathy. Published case reports document cardiomyopathy in patients with blood cobalt levels as low as 13µg/l.
Aims. Cemented hemiarthroplasty is an effective form of treatment for most patients with an intracapsular fracture of the hip. However, it remains unclear whether there are subgroups of patients who may benefit from the alternative operation of a modern uncemented hemiarthroplasty – the aim of this study was to investigate this issue. Knowledge about the heterogeneity of treatment effects is important for surgeons in order to target operations towards specific subgroups who would benefit the most. Methods. We used causal forest analysis to compare subgroup- and individual-level treatment effects between cemented and modern uncemented hemiarthroplasty in patients aged > 60 years with an intracapsular fracture of the hip, using data from the World Hip Trauma Evaluation 5 (WHiTE 5) multicentre randomized
Industries such as agriculture, construction and military have stringent rules about hearing protection due to the risk of noise induced hearing loss (NIHL). Due to the use of power tools, orthopaedic staff may be at risk of the same condition. The UK Health and Safety Executive (HSE) have clear standards as to what is deemed acceptable occupational noise levels on an A-weighted and C weighted scale. This review is aimed to assess evidence on noise exposure testing within Orthopaedic theatres to see if it exceeds the HSE regulations. A targeted search of online databases PUBMED and EMBASE was conducted using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) principles. This review was registered prospectively in PROSPERO. An eligibility criterion identifying
To date there is no medical treatment alternative to surgery for osteolysis after THA. In this proof-of-concept
Aims. The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure. Methods. Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans. Results. Overimpaction reduced primary acetabular component stability (p = 0.038) but did not significantly increase strain release after implantation (p = 0.117) or plastic deformations (p = 0.193). Higher press-fits were associated with larger polar gaps for the 1 Hz reference impaction (p = 0.002, R. 2. = 0.77), with a similar trend for overimpaction (p = 0.082, R. 2. = 0.31). High-frequency impaction did not significantly increase primary stability (p = 0.170) at lower impaction forces (p = 0.001); it was associated with smaller plastic deformations (p = 0.035, R. 2. = 0.34) and a trend for increased acetabular component relaxation between strokes (p = 0.112). Higher press-fit was not related to larger polar gaps for the 6 Hz impaction (p = 0.346). Conclusion. Overimpaction of press-fit acetabular components should be prevented since additional strokes can be associated with increased bone damage and reduced primary stability as shown in this study. High-frequency impaction at 6 Hz was shown to be beneficial compared with 1 Hz impaction. This benefit has to be confirmed in
Elevated blood cobalt secondary to metal-on-metal (MoM) hip arthroplasties has been shown to be a risk factor for developing cardiovascular complications including cardiomyopathy. Published case reports document cardiomyopathy in patients with blood cobalt levels as low as 13µg/l (13ppb, 221nmol/l).
Aims. Pelvic incidence (PI) is a position-independent spinopelvic parameter traditionally used by spinal surgeons to determine spinal alignment. Its relevance to the arthroplasty surgeon in assessing patient risk for total hip arthroplasty (THA) instability preoperatively is unclear. This study was undertaken to investigate the significance of PI relative to other spinopelvic parameter risk factors for instability to help guide its clinical application. Methods. Retrospective analysis was performed of a multicentre THA database of 9,414 patients with preoperative imaging (dynamic spinopelvic radiographs and pelvic CT scans). Several spinopelvic parameter measurements were made by engineers using advanced software including sacral slope (SS), standing anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), lumbar lordosis (LL), and PI. Lumbar flexion (LF) was determined by change in LL between standing and flexed-seated lateral radiographs. Abnormal pelvic mobility was defined as ∆SPT ≥ 20° between standing and flexed-forward positions. Sagittal spinal deformity (SSD) was defined as PI-LL mismatch > 10°. Results. PI showed a positive correlation with parameters of SS, SPT, and LL (r-value range 0.468 to 0.661). Patients with a higher PI value showed higher degrees of standing LL, likely as a compensatory measure to maintain sagittal spine balance. There was a positive correlation between LL and LF such that patients with less standing LL had decreased LF (r = 0.49). Similarly, there was a positive correlation between increased SSD and decreased LF (r = 0.54). PI in isolation did not show any significant correlation with lumbar (r = 0.04) or pelvic mobility (r = 0.02). The majority of patients (range 89.4% to 94.2%) had normal lumbar and pelvic mobility regardless of the PI value. Conclusion. The PI value alone is not indicative of either spinal or pelvic mobility, and thus in isolation may not be a risk factor for THA instability. Patients with SSD had higher rates of spinopelvic stiffness, which may be the mechanism by which PI relates to THA instability risk, but further
Aims. Highly polished stems with force-closed design have shown satisfactory clinical results despite being related to relatively high early migration. It has been suggested that the minimal thickness of cement mantles surrounding the femoral stem should be 2 mm to 4 mm to avoid aseptic loosening. The line-to-line cementing technique of the femoral stem, designed to achieve stem press-fit, challenges this opinion. We compared the migration of a highly polished stem with force-closed design by standard and line-to-line cementing to investigate whether differences in early migration of the stems occur in a
In a recent phase 2 superiority
Aims. Fixation of osteoporotic proximal humerus fractures remains challenging even with state-of-the-art locking plates. Despite the demonstrated biomechanical benefit of screw tip augmentation with bone cement, the clinical findings have remained unclear, potentially as the optimal augmentation combinations are unknown. The aim of this study was to systematically evaluate the biomechanical benefits of the augmentation options in a humeral locking plate using finite element analysis (FEA). Methods. A total of 64 cement augmentation configurations were analyzed using six screws of a locking plate to virtually fix unstable three-part fractures in 24 low-density proximal humerus models under three physiological loading cases (4,608 simulations). The biomechanical benefit of augmentation was evaluated through an established FEA methodology using the average peri-screw bone strain as a validated predictor of cyclic cut-out failure. Results. The biomechanical benefit was already significant with a single cemented screw and increased with the number of augmented screws, but the configuration was highly influential. The best two-screw (mean 23%, SD 3% reduction) and the worst four-screw (mean 22%, SD 5%) combinations performed similarly. The largest benefits were achieved with augmenting screws purchasing into the calcar and having posteriorly located tips. Local bone mineral density was not directly related to the improvement. Conclusion. The number and configuration of cemented screws strongly determined how augmentation can alleviate the predicted risk of cut-out failure. Screws purchasing in the calcar and posterior humeral head regions may be prioritized. Although requiring clinical corroborations, these findings may explain the controversial results of previous
Computer aided Total Hip Arthroplasty (THA) surgery is known to improve implantation precision, but