Please check your email for the verification action. You may continue to use the site and you are now logged in, but you will not be able to return to the site in future until you confirm your email address.
Gavril Ilizarov advocated a fine wire tension of between 900N and 1200N for circularframe construction. Wire tension can be achieved via a tensioning device or ‘Russian tensioning’ (a fixed wire lengthening around a bolt). There is limited information on the latter technique. This study explored the tensions achieved via Russian tensioning and reports the impact of a second wire on construct tension. A single 160mm stainless-steel ring was constructed, then 1.8mm stainless steel wires were secured using a Russian fixation bolt and Russian tensioned with a 2nd bolt. The angle subtended by tensioning using the 2nd bolt was measured using a goniometer. Angles of 45°, 70° and 90° were repeated in triplicates, with wire tension measured using a calibrated tensiometer. A second, orthogonal wire was added and tensioned to the same angle. Tensions of both wires were remeasured and recorded. Unpaired t-tests were used to compare mean tensions. A value of p<0.05 was considered significant. Tensioning at all angles was insufficient to achieve the target range of 900–1200N (range 99–110N). A second, orthogonal wire changed frame dynamics such that a 90° angle resulted in both wires achieving adequate tension (mean 1143N, SD 307N). Increases were significant across all tensioning angles (p=<0.002) however only biomechanically relevant for 90°. Russian tensioning is insufficient with a single wire, however the addition of an orthogonal wire increases tension in both wires, reaching the target range at 90° deflection. Further study using wire tensioners is warranted, and also the impact of non-orthogonal wire constructs