Open limb fractures are typically due to a high energy trauma. Several recent studied have showed treatment's superiority when a multidisciplinary approach is applied. World Health Organization reports that isolate limb traumas have an incidence rate of 11.5/100.000, causing high costs in terms of hospitalization and patient disability. A lack of experience in soft tissue management in orthopaedics and traumatology seems to be the determining factor in the clinical worsening of complex cases. The therapeutic possibilities offered by microsurgery currently permit simultaneous reconstruction of multiple tissues including vessels and nerves, reducing the rate of amputations, recovery time and preventing postoperative complications. Several scoring systems to assess complex limb traumas exist, among them: NISSSA, MESS, AO and Gustilo Anderson. In 2010, a further scoring system was introduced to focus open fractures of all locations: OTA-OFC. Rather than using a single composite score, the OTA-OFC comprises five components grades (skin, arterial, muscle, bone loss and contamination), each rated from mild to severe. The International Consensus Meeting of 2018 on musculoskeletal infections in orthopaedic surgery identified the OTA-OFC score as an efficient catalogue system with interobserver agreement that is comparable or superior to the Gustilo-Anderson classification. OTA-OFC predicts outcomes such as the need for adjuvant treatments or the likelihood of early amputation. An orthoplastic approach reconstruction must pay adequate attention to bone and soft tissue infections management. Concerning bone management: there is little to no difference in terms of infection rates for Gustilo-Anderson types I–II treated by reamed intramedullary nail,
The purpose of this study was to compare the results and complications of tibial lengthening over an intramedullary nail with treatment using the traditional Ilizarov method. In this matched case study, 16 adult patients underwent 19 tibial lengthening over nails (LON) procedures. For the matched case group, 17 patients who underwent 19 Ilizarov tibial lengthenings were retrospectively matched to the LON group.Objectives
Methods
Anatomical atlases document safe corridors for placement of wires when using fine-wire circular external fixation. The furthest posterolateral corridor described in the distal tibia is through the fibula. This limits the crossing angle and stability of the frame. In this paper we describe a new, safe Retro-Fibular Wire corridor, which provides greater crossing angles and increased stability. In a cadaver study, 20 formalin-treated legs were divided into two groups. Wires were inserted into the distal quarter of the tibia using two possible corridors and standard techniques of dissection identified the distance of the wires from neurovascular structures. In both groups the posterior tibial neurovascular bundle was avoided. In group A the peroneal artery was at risk. In group B this injury was avoided. Comparison of the groups showed a significant difference (p <
0.001). We recommend the Retro-Fibular wire technique whereby wires are inserted into the tibia mid-way between the posteromedial border of the fibula and the tendo Achillis, at 30° to 45° to the sagittal plane, and introduced from a posterolateral to an anteromedial position. Subsequently, when using this technique in 30 patients, we have had no neurovascular complications or problems relating to tethering of the peroneal tendons.