Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 4 - 4
1 Nov 2021
Tarantino U
Full Access

Cigarette smoking has a negative impact on the skeletal system by reducing bone mass and increasing the risk of fractures through its direct or indirect effects on bone remodeling. Recent evidence shows that smoking causes an imbalance in bone turnover, making bone vulnerable to osteoporosis and fragility fractures. In addition, cigarette smoking is known to have deleterious effects on fracture healing, as a positive correlation has been shown between the daily number of cigarettes smoked and years of exposure to smoking, although the underlying mechanisms are not fully understood. Smoking is also known to cause several medical and surgical complications responsible for longer hospital stays and a consequent increase in resource consumption. Smoking cessation is, therefore, highly advisable to prevent the onset of metabolic bone disease. However, some of the consequences appear to continue for decades. Based on this evidence, the aim of our work was to assess the impact of smoking on the skeletal system, particularly bone fractures, and to identify the pathophysiological mechanisms responsible for the impairment of fracture healing. Because smoking represents a major public health problem, understanding the association between cigarette smoking and the occurrence of bone disease is necessary in order to identify potential new targets for intervention


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 75 - 75
1 Jan 2017
Li L Majid K Huber C
Full Access

Osteonecrosis of the femoral head is a complex pathologic process with many aetiological factors. Factors most often mentioned in the literature are mechanical disruption (hip trauma or surgery), steroid use, smoking, haemoglobinopathies and hyperlipidaemia. 1. Our case depicts a rare association of crack cocaine related to osteonecrosis of the femoral head which has never been reported in the available literature. Case Report: A 32 year old man was referred to our Orthopaedic clinic with right hip pain. He had a 9 pack-year history of cigarette smoking and had also smoked crack cocaine between ages 20 to 28; shortly after this the hip pain started. He denied antecedent injury. He had undergone a steroid injection into his right ankle abroad for swelling one year before referral, which was after onset of hip pain. MRI of his hip previously performed abroad had been normal. The patient had an indoor job and was otherwise fit and well. On examination he had reduced of movement in his right hip with 5–10 degrees of fixed flexion deformity. Plain radiography demonstrated cyst formation and sclerosis of both femoral heads. Repeat MRI confirmed bilateral osteonecrosis, worse on the right with risk of head collapse. The patient underwent bilateral core decompressions. Subsequent follow-up demonstrated a mobile patient with no need for arthroplasty and he was discharged after two years. Osteonecrosis is caused by the coagulation of the intra-osseous microcirculation leading to thrombosis formation and eventual reduction in osseous blood supply. Steroid use is associated with increased risk of osteonecrosis to the femoral head, however in these cases the patients often undergo either direct local or systemic infiltration of steroid. In this case steroid was administered after symptoms began to a far distant site and therefore cannot be the cause. Cigarette smoking is also known to cause osteonecrosis. Our patient had smoked cigarettes for fourteen years without problems, and it was after he ceased to smoke crack cocaine that his symptoms began. Cocaine blocks voltage-gated sodium-channels causing vasospasm. It is known to cause nasal and facial bone osteonecrosis due to its common intranasal method of delivery. We postulate that in this case crack cocaine was a synergistic factor towards development of femoral head osteonecrosis


Bone & Joint Research
Vol. 5, Issue 7 | Pages 287 - 293
1 Jul 2016
Ismail H Phedy P Kholinne E Djaja YP Kusnadi Y Merlina M Yulisa ND

Objectives

To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone.

Methods

Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment.


Bone & Joint Research
Vol. 2, Issue 6 | Pages 102 - 111
1 Jun 2013
Patel RA Wilson RF Patel PA Palmer RM

Objectives

To review the systemic impact of smoking on bone healing as evidenced within the orthopaedic literature.

Methods

A protocol was established and studies were sourced from five electronic databases. Screening, data abstraction and quality assessment was conducted by two review authors. Prospective and retrospective clinical studies were included. The primary outcome measures were based on clinical and/or radiological indicators of bone healing. This review specifically focused on non-spinal orthopaedic studies.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1394 - 1400
1 Oct 2006
Eid K Labler L Ertel W Trentz O Keel M

Systemic factors are believed to be pivotal for the development of heterotopic ossification in severely-injured patients. In this study, cell cultures of putative target cells (human fibroblastic cells, osteoblastic cells (MG-63), and bone-marrow stromal cells (hBM)) were incubated with serum from ten consecutive polytraumatised patients taken from post-traumatic day 1 to day 21 and with serum from 12 healthy control subjects.

The serum from the polytraumatised patients significantly stimulated the proliferation of fibroblasts, MG-63 and of hBM cells. The activity of alkaline phosphatase in MG-63 and hBM cells was significantly decreased when exposed to the serum of the severely-injured patient. After three weeks in 3D cell cultures, matrix production and osteogenic gene expression of hBM cells were equal in the patient and control groups. However, the serum from the polytraumatised patients significantly decreased apoptosis of hBM cells compared with the control serum (4.3% vs 19.1%, p = 0.031).

Increased proliferation of osteoblastic cells and reduced apoptosis of osteoprogenitors may be responsible for increased osteogenesis in severely-injured patients.