Advertisement for orthosearch.org.uk
Results 1 - 20 of 46
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_7 | Pages 1 - 1
8 May 2024
Wiewiorski M Barg A Valderrabano V
Full Access

Introduction. Autologous Matrix Induced Chondrogenesis (AMIC) for surgical treatment of osteochondral lesions of the talus (OCLT) has shown excellent clinical and radiological results at short term follow up two years after surgery. However, no mid-term follow up data is available. Aim. 1. To evaluate the clinical outcome after AMIC-aided reconstruction of osteochondral lesions of the talus at a minimum follow up time of five years. 2. To evaluate the morphology and quality of the regenerated cartilage by magnetic resonance imaging (MRI) at on at a minimum follow up time of five years. Methods. Seventeen patients prospectively underwent surgery receiving a AMIC-aided repair of OCLT consisting of debridement, autologous grafting, and sealing of the defect with a collagen scaffold (Chondro-Gide, Geistlich Surgery, Wolhusen, Switzerland). Clinical and radiological assessment was performed before and after a minimum of 60 months after surgery (average 78 months, range, 60–120). Clinical examination included the American Orthopaedic Foot & Ankle Society (AOFAS) ankle score and the Visual Analogue Scale (VAS). Radiological imaging consisted of MRI. The Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score was applied. Results. The AOFAS ankle score improved significantly from a mean of 60 points preoperatively (range, 17–79) to 91 points (range, 70–100) postoperatively (p< 0.01). The preoperative pain score averaged a VAS of 5 (range, 2–8), improving to an average of 1.1 (range 0–8) (p< 0.01). The MOCART score for cartilage repair tissue on postoperative MRI averaged 71 points (range, 50–90). Conclusion. The AMIC-procedure is safe for the treatment of OCLT with overall good clinical and magnetic resonance imaging results at five years follow up


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 83 - 84
1 Mar 2009
Anders S Wiech O Schaumburger J Grifka J
Full Access

Introduction: Bone-marrow stimulating techniques like microfracturing for focal chondral defects of the knee joint are widespread utilizing mesenchymal stem cells (MSC) for an autogenous reparation process. Microfracturing shows good results for smaller defects up to 2cm. 2. while larger defects tend to an early secondary degeneration. Autologous Matrix Induced Chondrogenesis (AMIC®) combines microfracturing with application of a porcine collagen type-I/III bilayer matrix to host the MSC and to stabilize the blood clot. Methods: 32 patients (25m, 7f, mean age 37.4y (18–52y)) with 35 focal chondral defects of the knee joint (ICRS III–IV°) of the condyle, trochlea and/or patella were treated by standardized microfracturing and application of a collagen matrix (Geistlich Biomaterials, Wolhusen, Switzerland). The outcome was evaluated prospectively by clinical scores and MRI with a follow-up of 6 to 24 months. The mean defect size was 3.86 cm. 2. (1.0 – 6.8 cm. 2. ). 22 patients (68%) had at least one operation (1–8) on the knee before. 9 defects were caused by trauma. All 7 patients with osteochondritis dissecans had an autologous bone grafting. In 5 patients an ACL stabilization was performed simultaneously. Results: All patients considered their knee as abnormal (ICRS III° (70%)) or severely abnormal (ICRS IV° (30%)) preoperatively according to the ICRS functional status. The Cincinnati-Score improved from 52.9 to 81.1 points while the Lysholm-Score rose from 60.4 to 85.9 points (each p< 0.001). Pain decreased significantly from 6.1 to 2.2 (10=max.) on the visual analogue scale. 4 biopsies (4–21 months) revealed reasonable results with regard to surface formation, filling and integration in the Brittberg score (∅10.25 pts., 12 pts.=max.) The MRI follow-ups showed an adequate filling of the defect, no prolonged effusion occured. Conclusion: Microfracturing in combination with a collagen matrix (AMIC®) is a minimal invasive, effective technique for the repair of focal cartilage defects of the knee joint. Not using cultured chondrocytes it can be performed cost-effectively as a single-step procedure. Both primary and secondary treatments are possible. The first results concerning clinical functional improvement, pain reduction and patients’ satisfaction as well as defect filling in MRI are promising


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 24 - 24
2 May 2024
Lawrence J Woods S Roberts K Tuck E Balogh P Predeus A He P Polanski K Prigmore E Zhou D Webb S Jardine L
Full Access

The reliable production of _in vitro_ chondrocytes that faithfully recapitulate _in vivo_ development would be of great benefit for orthopaedic disease modelling and regenerative therapy(1,2). Current efforts are limited by off-target differentiation, resulting in a heterogeneous product, and by the lack of comparison to human tissue, which precludes detailed evaluation of _in vitro_ cells(3,4).

We performed single-cell RNA-sequencing of long bones dissected from first-trimester fetal limbs to form a detailed ‘atlas’ of endochondral ossification. Through 100-gene in-situ sequencing, we placed each sequenced cell type into its anatomical context to spatially resolve the process of endochondral ossification. We then used this atlas to perform deconvolution on a series of previously published bulk transcriptomes generated from _in vitro_ chondrogenesis protocols to evaluate their ability to accurately produce chondrocytes.

We then applied single-nuclear RNA-sequencing to cells from the best performing protocol collected at multiple time points to allow direct comparison between the differentiation of _in vitro_ and _in vivo_ cells.

We captured 275,000 single fetal cells, profiling the development of chondrocytes from multipotent mesenchymal progenitors to hypertrophic cells at full transcriptomic breadth. Using this atlas as the ground truth for evaluating _in vitro_ cells, we found substantial variability in cell states produced by each protocol, with many showing little similarity to _in vivo_ cells, and all exhibiting off-target differentiation.

Trajectory alignment between _in vivo_ and _in vitro_ single-cell data revealed key differences in gene expression dynamics between _in vitro_ and _in vivo cells,_ with several osteoblastic transcription factors erroneously unregulated _in vitro,_ including _FOXO1._

Using this information, we inhibited _FOXO1_ in culture to successfully increase chondrocyte yield _in vitro._

This study presents a new framework for evaluating tissue engineering protocols, using single-cell data to drive improvement and bring the prospect of true engineered cartilage closer to reality.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 43 - 43
2 Jan 2024
Nürnberger S
Full Access

Photobiomodulation (PBM), the use of light for regenerative purposes, has a long history with first documentations several thousand years ago in ancient Egypt and a Nobel Price on this topic at the beginning of last century (by Niels Finsen). Nowadays, it is in clinical use for indications such as wound healing, pain relief and anti-inflammatory treatment. Given the rising numbers of in vitro studies, there is increasing evidence for the underlying mechanisms such as wavelength dependent reactive oxygen production and adenosine triphosphate generation. In cartilage regeneration, the use of PBM is controversially discussed with divergent results in clinics and insufficient in vitro studies. As non-invasive therapy, PMB is, though, of particular importance, since a general regenerative stimulus would be of great benefit in the otherwise only surgically accessible tissues. We therefore investigated the influence of different wavelengths - blue (475 nm), green (516 nm) or red (635 nm) of a low-level laser (LLL) - on the chondrogenic differentiation of chondrocytes and adipose derived stromal cells of different human donors and applied the light in different settings (2D, 3D) with cells in a proliferative or differentiating stage. All assessed parameters (spheroid growth, histology, matrix quantification and gene expression) revealed an influence of LLL on chondrogenesis in a donor-, wavelength- and culture-model-dependent manner. Especially encouraging was the finding, that cells with poor chondrogenic potential could be improved by one single 2D treatment. Amongst the three wave lengths, red light was the most promising one with the most positive impact. Although in vivo data are still missing, these in vitro results provide evidence for a proper biofunctional effect of LLL.


Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. Quality of cartilaginous repair tissue following BMSC transplantation has been shown to correlate with functional outcome. Therefore, tissue-engineering variables, such as cell expansion environment and seeding density of scaffolds, are currently under investigation. The objectives of this study were to demonstrate chondrogenic differentiation of BMSCs seeded within a collagen I scaffold following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments, and assess the impact of seeding density on in vitro chondrogenesis. It was hypothesised that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seeding density of 10 million cells/cm3. Ovine BMSCs were isolated in a 2D environment by plastic adherence, expanded to passage two in flasks containing expansion medium, and seeded within collagen I scaffolds (6 mm diameter, 3.5 mm thickness and 0.115 ± 0.020 mm pore size; Integra LifeSciences Corp.) at densities of 50, 10, 5, 1, and 0.5 million BMSCs/cm3. For 3D isolation and expansion, bone marrow aspirates containing known quantities of mononucleated cells (BMNCs) were seeded on scaffolds at 50, 10, 5, 1, and 0.5 million BMNCs/cm3 and cultured in expansion medium for an equivalent duration to 2D expansion. All cell-scaffold constructs were differentiated in vitro in chondrogenic medium containing transforming growth factor-beta three for 21 days and assessed with RT-qPCR, safranin O staining, histological scoring using the Bern Score, collagen immunofluorescence, and glycosaminoglycan (GAG) quantification. Two dimensional-expanded BMSCs seeded at all densities were capable of proteoglycan production and displayed increased expressions of aggrecan and collagen II mRNA relative to pre-differentiation controls. Collagen II deposition was apparent in scaffolds seeded at 0.5–10 million BMSCs/cm3. Chondrogenesis of 2D-expanded BMSCs was most pronounced in scaffolds seeded at 5–10 million BMSCs/cm3 based on aggrecan and collagen II mRNA, safranin O staining, Bern Score, total GAG, and GAG/DNA. For 3D-expanded BMSC-seeded scaffolds, increased aggrecan and collagen II mRNA expressions relative to controls were noted with all densities. Proteoglycan deposition was present in scaffolds seeded at 0.5–50 million BMNCs/cm3, while collagen II deposition occurred in scaffolds seeded at 10–50 million BMNCs/cm3. The highest levels of aggrecan and collagen II mRNA, Bern Score, total GAG, and GAG/DNA occurred with seeding at 50 million BMNCs/cm3. Within a collagen I scaffold, 2D- and 3D-expanded BMSCs are capable of hyaline-like chondrogenesis with optimal cell seeding densities of 5–10 million BMSCs/cm3 and 50 million BMNCs/cm3, respectively. Accordingly, these densities could be considered when seeding collagen I scaffolds in BMSC transplantation protocols


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 6 - 6
2 Jan 2024
Liu W Feng M Xu P
Full Access

More and more evidences showed that cartilage harbored local progenitor cells that could differentiate toward osteoblast, chondrocyte, and adipocyte. However, our previous results showed that osteoarthritis derived chondroprogenitor cells (OA-CPC) exhibited strong osteogenic potential even in chondrogenic condition. How to promote their chondrogenic potential is the key for cartilage repair and regeneration in osteoarthritis. Recently, lipid availability was proved to determine skeletal progenitor fate. Therefore, we aim to determine whether lipid inhibition under 3D culture condition could enhance OA-CPC chondrogenesis. Moreover, glucose concentration was also evaluated for chondrogenic capacity. Although there are many researches showed that lower glucose promotes chondrogenesis, in our results, we found that OA-CPC in high concentration of glucose (4.5g/L) with lipid inhibitor (GW1100) showed strongest chondrogenic potential, which could form largest cell pellet with strong proteoglycan staining, COL II expression and no COL I expression. Besides, COL2A1 was increased and COL10A1 was decreased significantly by GW1100 under high glucose condition in 2D culture. Interestingly, although the expression level of MMP13 was not changed by GW1100 at RNA and protein level, less MMP13 protein secreted out of cell nuclear. In summary, we estimated that higher glucose and lower lipid supplies benefit OA-CPC chondrogenesis and cartilage repair.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 1 - 1
1 Dec 2020
Gögele CL Kerling V Lenhart A Wiltzsch S Schäfer-Eckart K Minnich B Weiger TM Schulze-Tanzil G
Full Access

Cartilage injuries often represent irreversible tissue damage because cartilage has only a low ability to regenerate. Thus, cartilage loss results in permanent damage, which can become the starting point for osteoarthritis. In the past, bioactive glass scaffolds have been developed for bone replacement and some of these variants have also been colonized with chondrocytes. However, the hydroxylapaptite phase that is usually formed in bioglass scaffolds is not very suitable for cartilage formation (chondrogenesis). This interdisciplinary project was undertaken to develop a novel slowly degrading bioactive glass scaffold tailored for cartilage repair by resembling the native extracellular cartilage matrix (ECM) in structure and surface properties. When colonized with articular chondrocytes, the composition and topology of the scaffolds should support cell adherence, proliferation and ECM synthesis as a prerequisite for chondrogenesis in the scaffold.

To study cell growth in the scaffold, the scaffolds were colonized with human mesenchymal stromal cells (hMSCs) and primary porcine articular chondrocytes (pACs) (27,777.8 cells per mm3) for 7 – 35 d in a rotatory device. Cell survival in the scaffold was determined by vitality assay. Scanning electron microscopy (SEM) visualized cell ultramorphology and direct interaction of hMSCs and pACs with the bioglass surface. Cell proliferation was detected by CyQuant assay. Subsequently, the production of sulphated glycosaminoglycans (sGAGs) typical for chondrogenic differentiation was depicted by Alcian blue staining and quantified by dimethylmethylene blue assay assay. Quantitative real-time polymerase chain reaction (QPCR) revealed gene expression of cartilage-specific aggrecan, Sox9, collagen type II and dedifferentiation-associated collagen type I. To demonstrate the ECM-protein synthesis of the cells, the production of collagen type II and type I was determined by immunolabelling.

The bioactive glass scaffold remained stable over the whole observation time and allowed the survival of hMSCs and pACs for 35 days in culture. The SEM analyses revealed an intimate cell-biomaterial interaction for both cell types showing cell spreading, formation of numerous filopodia and ECM deposition. Both cell types revealed initial proliferation, decreasing after 14 days and becoming elevated again after 21 days. hMSCs formed cell clusters, whereas pACs showed an even distribution. Both cell types filled more and more the pores of the scaffold. The relative gene expression of cartilage-specific markers could be proven for hMSCs and pACs. Cell associated sGAGs deposition could be demonstrated by Alcian blue staining and sGAGs were elevated in the beginning and end of the culturing period. While the production of collagen type II could be observed with both cell types, the synthesis of aggrecan could not be detected in scaffolds seeded with hMSCs.

hMSCs and pACs adhered, spread and survived on the novel bioactive glass scaffolds and exhibited a chondrocytic phenotype.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 29 - 29
23 Jun 2023
Briem T Stadelmann VA Rüdiger HA Leunig M
Full Access

Femoroacetabular impingement is a prearthritic deformity frequently associated with early chondral damage. Several techniques exist for restoring larger cartilage defects. While AMIC proved to be an effective treatment in knee and ankle, there are only short-term data available in hip. This study aimed to investigate the mid-term clinical outcome of patients with chondral lesions treated by AMIC and evaluate the quality of repair tissue via MRI.

This retrospective, single center study includes 18 patients undergoing surgical hip dislocation for FAI between 2013 and 2016. Inclusion criteria were: cam or pincer-type FAI, femoral or acetabular chondral lesions > 1 cm2, (IRCS III-IV). Due to exclusion criteria and loss-to-follow-up 9 patients (10 hips) could be included. Patient reported outcome measures included Oxford Hip Score (OHS) & Core Outcome Measure Index (COMI)). MRIs were evaluated using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score.

None of the patients underwent revision surgery except screw removals from the greater trochanter. Followup data indicate a satisfactory to good hip function at 5 years: PROMS improved from pre- to postop at 5 years: OHS from 38.1 to 43.4, COMI from to 1.8 and UCLA from 4 to 8.1 respectively. MOCART score was 67.5 postoperatively. Subgrouping showed slightly better results for acetabular defects (Ø 69.4) compared femoral defects (Ø 60).

Based on the reported mid-term results, we consider AMIC as a valuable treatment option for larger chondral defects of the hip.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 104 - 104
1 Dec 2020
Mak CC To K Fekir K Brooks RA Khan WS
Full Access

SOX genes comprise a family of transcription factors characterised by a conserved HMG-box domain that confer pleiotropic effects on cell fate and differentiation through binding to the minor groove of DNA. Paracrine regulation and contact-dependant Notch signalling has been suggested to modulate the induction of SOX gene expression. The objective of this study is to investigate the crosstalk between and preconditioning of mesenchymal stem cells (MSCs) with chondrocytes through comparing SOX gene expression in their co-culture and respective monocultures.

Our study adopted an in vitro autologous co-culture of p0 adipose-derived MSCs (AMSCs) and articular chondrocytes derived from Kellgren-Lawrence Grade III/IV osteoarthritic knee joints (n=7). Samples were handled according to the 2004 UK Human Tissue Act. Cells were purified and co-cultured with one AMSC for every chondrocyte at 5000 cells/cm2. The AMSCs were characterised by a panel of MSC surface markers in flow cytometry and were allowed to undergo trilineage differentiation for subsequent histological investigation. SOX5, SOX6, and SOX9 expression of co-cultures and monoculture controls were quantified by TaqMan quantitative real-time PCR. Experiments were performed in triplicate.

AMSC phenotype was evidenced by the expression of CD105, CD73, CD90 & heterogenous CD34 but not CD45, CD14, CD19 & HLA-DR in flow cytometry, and also differentiation into chondrogenic, osteogenic and adipogenic lineages with positive Alcian blue, Alizarin Red and Oil Red O staining. The expression of SOX5, SOX6, and SOX9 were greater in observed co-cultures than would be expected from an expression profile modelled from monocultures.

The findings provides evidence for the upregulation of SOX family transcription factors expression during the co-culture of MSCs and chondrocytes, suggesting an active induction of chondrogenic differentiation and change of cell fate amidst a microenvironment that facilitates cell-contact and paracrine secretion. This provides insight into the chondrogenic potential and therapeutic effects of MSCs preconditioned by the chondrocyte secretome (or potentially chondrocytes reinvigorated by the MSC secretome), and ultimately, cartilage repair.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 53 - 53
1 Nov 2018
Stoddart MJ
Full Access

The unique properties of mesenchymal stem cells (MSCs) and their natural presence within the bone marrow make them an attractive source of cells for novel cartilage repair strategies. As mechanics play a critical role in vivo, a more physiological loading regime in vitro would be more appropriate to test novel therapies, and this can be achieved using bioreactors. Using a multiaxial load bioreactor system, we have investigated the effect of mechanical stimulation on human stem cell differentiation in the absence of growth factors, specifically transforming growth factor β (TGFβ). Our bioreactor system allows for the application of shear, compression or a combination of both stimuli to establish the phenotypic changes induced within MSCs. Neither compression alone, nor shear alone induces a change in MSC phenotype with a fibrin-based scaffold. However, we have demonstrated that a combination of compression and shear is able to induce chondrogenic differentiation and this is due to increased endogenous expression and activation of TGFβ. Using this multiaxial load bioreactor system, we can search for novel markers and potential therapeutic targets that only occur under physiological loads. In addition, potential rehabilitation protocols to be used after cell therapy in cartilage repair can also be investigated.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 23 - 23
1 Nov 2018
Pattappa G Zellner J Johnstone B Docheva D Angele P
Full Access

Mesenchymal Stem Cells (MSCs) are a candidate cell type for treating osteoarthritic focal defects. In vivo, cartilage and bone marrow reside under a low oxygen tension, between 2–7% oxygen or physioxia, that has been shown to enhance MSC chondrogenesis. However, chondrogenesis is inhibited in the presence of IL-1. Here, it was hypothesized that physioxia reduces IL-1 inhibited chondrogenesis. Human MSCs (Mean age, 32 years; n = 9) were split equally for expansion under either 2% (physioxia) or 20% (hyperoxia) oxygen. Chondrogenic pellets (2 × 105 MSCs/pellet) were formed and cultured in the presence of 10 ng/ml TGF-b1 and in combination with either 0.1 or 0.5 ng/ml IL-1 under their respective expansion conditions. Pellets were assessed for their wet weight, GAG and collagen II content and evaluated histologically (Collagen X and MMP-13). Statistical analysis was performed using a Two-way ANOVA with Tukey post-hoc test, significant differences stated when p < 0.05. A significant dose-dependent IL-1 inhibition in chondrogenesis was observed for pellet wet weight and GAG content under hyperoxia (p < 0.05). Physioxia alone significantly increased wet weight, GAG and collagen II content (p < 0.05) compared to hyperoxia. A donor-dependant response was observed, whereby 80% of donors responded to physioxia and their analysis showed significant increases in wet weight and GAG content in the presence IL-1(p < 0.05). Furthermore, reduced hypertrophy marker expression (Collagen X and MMP-13) was observed under physioxia in the presence of IL-1. The molecular signalling mechanisms controlling these responses are to be investigated.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 33 - 33
1 Jul 2020
Wu Y Denslin V Ren X Lee CS Yap FL Yang Z Lee E Tee C
Full Access

Adult articular cartilage mechanical functionality is dependent on the unique zonal organization of its tissue. Current mesenchymal stem cell (MSC)-based treatment has resulted in sub-optimal cartilage repair, with inferior quality of cartilage generated from MSCs in terms of the biochemical content, zonal architecture and mechanical strength when compared to normal cartilage. The phenotype of cartilage derived from MSCs has been reported to be influenced by the microenvironmental biophysical cues, such as the surface topography and substrate stiffness. In this study, the effect of nano-topographic surfaces to direct MSC chondrogenic differentiation to chondrocytes of different phenotypes was investigated, and the application of these pre-differentiated cells for cartilage repair was explored.

Specific nano-topographic patterns on the polymeric substrate were generated by nano-thermal imprinting on the PCL, PGA and PLA surfaces respectively. Human bone marrow MSCs seeded on these surfaces were subjected to chondrogenic differentiation and the phenotypic outcome of the differentiated cells was analyzed by real time PCR, matrix quantification and immunohistological staining. The influence of substrate stiffness of the nano-topographic patterns on MSC chondrogenesis was further evaluated. The ability of these pre-differentiated MSCs on different nano-topographic surfaces to form zonal cartilage was verified in in vitro 3D hydrogel culture. These pre-differentiated cells were then implanted as bilayered hydrogel constructs composed of superficial zone-like chondro-progenitors overlaying the middle/deep zone-like chondro-progenitors, was compared to undifferentiated MSCs and non-specifically pre-differentiated MSCs in a osteochondral defect rabbit model.

Nano-topographical patterns triggered MSC morphology and cytoskeletal structure changes, and cellular aggregation resulting in specific chondrogenic differentiation outcomes. MSC chondrogenesis on nano-pillar topography facilitated robust hyaline-like cartilage formation, while MSCs on nano-grill topography were induced to form fibro/superficial zone cartilage-like tissue. These phenotypic outcomes were further diversified and controlled by manipulation of the material stiffness. Hyaline cartilage with middle/deep zone cartilage characteristics was derived on softer nano-pillar surfaces, and superficial zone-like cartilage resulted on softer nano-grill surfaces. MSCs on stiffer nano-pillar and stiffer nano-grill resulted in mixed fibro/hyaline/hypertrophic cartilage and non-cartilage tissue, respectively. Further, the nano-topography pre-differentiated cells possessed phenotypic memory, forming phenotypically distinct cartilage in subsequent 3D hydrogel culture. Lastly, implantation of the bilayered hydrogel construct of superficial zone-like chondro-progenitors and middle/deep zone-like chondro-progenitors resulted in regeneration of phenotypically better cartilage tissue with higher mechanical function.

Our results demonstrate the potential of nano-topographic cues, coupled with substrate stiffness, in guiding the differentiation of MSCs to chondrocytes of a specific phenotype. Implantation of these chondrocytes in a bilayered hydrogel construct yielded cartilage with more normal architecture and mechanical function. Our approach provides a potential translatable strategy for improved articular cartilage regeneration using MSCs.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 88 - 88
1 Mar 2021
Elahi SA Fehervary H Famaey N Jonkers I
Full Access

To unravel the relation between mechanical loading and biological response, cell-seeded hydrogel constructs can be used in bioreactors under multi-axial loading conditions that combines compressive with torsional loading. Typically, considerable biological variation is observed. This study explores the potential confounding role of mechanical factors in multi-directional loading experiments. Indeed, depending on the material properties of the constructs and characteristics of the mechanical loading, the mechanical environment within the constructs may vary. Consequently, the local biological response may vary from chondrogenesis in some parts to proteoglycan loss in others.

This study uses the finite element method to investigate the effects of material properties of cell-seeded constructs and multiaxial loading characteristics on local mechanical environment (stresses and strains) and relate these to chondrogenesis (based on maximum compressive principal strain (MCPS) - Zahedmanesh et al., 2014) and proteoglycan loss (based on fluid velocity (FV) - Orozco et al., 2018).

The construct was modelled as a homogenized poro-hyperelastic (using a Neohookean model and Darcys law) cylinder of 8mm diameter and equal height using Abaqus. The bottom surface was fully constrained and dynamic unconfined compression and torsion loading were applied to the top surface. Free fluid flow was allowed through the lateral surface. We studied the sensitivity of the maximum values of the target parameters at 9 key locations to the material parameters and loading characteristics. Six input parameters were varied in preselected ranges: elastic modulus (E=[20,80]kPa), Poissons ratio (nu=[0.1,0.4]), permeability (k=[1,4]e-12m4/Ns), compressive strain (Comp=[5,20]%), rotation (Rot=[5,20]°) and loading frequency (Freq=[1,4]Hz). A full-factorial design of experiment method was used and a first-order polynomial surface including the interactions fitted the responses.

MCPS varies between 7.34% and 33.52% and is independent of the material properties (E, nu and k) and Freq but has a high dependency on Comp and a limited dependency on Rot. The maximum value occurs centrally in the construct, except for high values of Rot and low Comp where it occurs at the edges. FV vary between 0.0013mm/sec and 0.1807mm/sec and dominantly depends on E, k and Comp, while its dependency on Rot and Freq is limited. The maximum value usually occurs at the edges, although at high Freq it may move towards the center of the superficial and deep zones. This study can be used as a guideline for the optimized selection of mechanical parameters of hydrogel for cell-seeded constructs and loading conditions in multi-axial bioreactor studies. In future work, we will study the effect in intact and injured cartilage explants.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 21 - 21
1 Nov 2018
Capar S van Osch G Verhaar J Bastiaansen-Jenniskens Y
Full Access

Joint injuries often result in inflammation and cartilage defects. When inflamed, the synovium secretes factors that prevent successful cartilage repair by inhibiting chondrogenic differentiation of progenitor cells. In particular the pro-inflammatory macrophages in the synovium are indicated to contribute to this anti-chondrogenic effect. Thus, we aimed to counteract the anti-chondrogenic effect of inflamed synovium by modulating synovial inflammation and its macrophages. Synovium tissue obtained from osteoarthritic patients undergoing a total knee replacement was cut into explants and cultured for 72 hours +/− 1 µM of the anti-inflammatory drug triamcinolone acetonide (TAA) (Sigma Aldrich). TAA significantly decreased gene expression of TNFA, IL1β and IL6, and increased expression of CCL18, IL1RA in synovial explants (all with p < 0.001). On the other hand, TAA significantly decreased the percentages of pro-inflammatory CD14+/CD80+ and CD14+/CD86+ macrophages in the synovium (both p < 0.001) as assessed by flow cytometry analyses. The percentages of anti-inflammatory CD14+/CD163+ macrophages, is significantly increased (p < 0.001) in TAA treated synovium. Conditioned medium (CM) from synovium explants downregulated the gene expression of cartilage matrix components collagen type-2 and aggrecan expression in chondrogenic MSCs. This chondrogenesis inhibiting effect was reduced by treating synovium with TAA during the production of the CM. Our findings indicate that reducing synovial inflammation might improve the joint environment for better cartilage repair, possibly by modulation of macrophage phenotypes.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 132 - 132
1 Mar 2012
Wimmer J Wendler N Russlies M Behrens P
Full Access

Autologous matrix-induced chondrogenesis (AMIC) is a new treatment option for full-thickness cartilage defect repair using the well-known microfracturing technique combined with a porcine collagen type I/III matrix implant and partially autologous fibrin sealant.

A retrospective study has being carried out to investigate the objective and subjective clinical outcome of this procedure over a period of up to 2 years after the operation. 18 patients (10 male, 8 female) with localised cartilage defects were treated with AMIC.

The mean age was 37 13 years. Defects treated were localised retropatellar (6), on the medial femoral condyle (7), on the lateral femoral condyle (2) and multiple lesions (3). During the clinical follow-up these patients were evaluated with the help of 3 different scores (IKDC score, Cincinnati score, Lysholm-Gillquist score).

For the collective of 18 patients, one or more years had elapsed since the operation at the time this study was completed. 10 patients were included into the 2-year evaluation. The IKDC Score showed a mean improvement from 28 to 58 out of 100 at 1-year and from 25.5 to 69 out of 100 at 2-years post-operative. The Cincinnati and Lysholm-Gillquist scores showed the same tendency with an improvement of about 40 pecent at 1 year and about 55 percent at 2 years compared to pre-operative value. The improvement in the IKDC Score as well as the Cincinnati and Lysholm-Gillquist suggest that AMIC is a promising alternative in the treatment of local cartilage defects in the knee with good short and possibly mid-term results.

Further follow up will reveal, if the good results are durable and AMIC, as matrix enhanced microfracturing technique can become a valuable, recognised cartilage repair technique.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 66 - 66
1 Apr 2018
Fischer J Traub N Sims T Richter W
Full Access

Objective

Early cell loss of up to 50% is common to in vitro chondrogenesis of mesenchymal stromal cells (MSC) and stimulation of cell proliferation could compensate for this unwanted effect and improve efficacy and tissue yield for cartilage tissue engineering. We recently demonstrated that proliferation is an essential requirement for successful chondrogenesis of MSC, however, how it is regulated is still completely unknown. We therefore aimed to identify signaling pathways involved in the regulation of proliferation during in vitro chondrogenesis and investigated, whether activation of relevant pathways could stimulate proliferation.

Design

Human MSC were subjected to in vitro chondrogenesis for up to 42 days under standard conditions in the presence of 10 ng/ml TGF-β. Cells were or were not additionally treated with inhibitors of bone morphogenetic protein (BMP), insulin-like growth factor (IGF) IGF/PI3K, fibroblast growth factor (FGF) or indian hedgehog (IHH) pathways for two or four weeks. To investigate the stimulation of proliferation by exogenous factors, cells were treated with BMP-4, IGF-1, FGF-18 or purmorphamine (small molecule hedgehog agonist). Proliferation was determined by [3H]-thymidine incorporation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 83 - 83
1 Jan 2017
Fischer J Ortel M Hagmann S Hoeflich A Richter W
Full Access

While mesenchymal stromal cells (MSCs) are a very attractive cell source for cartilage regeneration, an inherent tendency to undergo hypertrophic maturation and endochondral ossification; as well as insufficient extracellular matrix production still prevent their clinical application in cell –based cartilage repair therapies. We recently demonstrated that intermittent treatment of MSC with parathyroid hormone-related protein (PTHrP) during in vitro chondrogenesis significantly enhanced extracellular matrix deposition and concomitantly reduced hypertrophy (1) opposite to constant PTHrP treatment, which strongly suppressed chondrogenesis via the cAMP/PKA pathway (2). Since signal timing seemed to be decisive for an anabolic versus catabolic outcome of the PTHrP treatment, we here aimed to investigate the role of PTHrP pulse frequency, pulse duration and total weekly exposure time in order to unlock the full potential of PTHrP pulse application to enhance and control MSC chondrogenesis.

Human bone marrow-derived MSC were subjected to in vitro chondrogenesis for six weeks. From day 7–42, cells were additionally exposed to 2.5 nM PTHrP(1–34) pulses or left untreated (control). Pulse frequency was increased from three times per week (3×6h/week) to daily, thereby maintaining either pulse duration (6h/d, total 42 h/week) or total weekly exposure time (2.6h/d, total 18 h/week).

A high frequency of PTHrP-treatment (daily) was important to significantly increase extracellular matrix deposition and strongly suppress ALP activity by 87 %; independent of the pulse duration. A long pulse duration was, however, critical for the suppression of the hypertrophic marker gene IHH, while MEF2C and IBSP were significantly suppressed by all tested pulse duration and frequency protocols. COL10A1, RUNX2 and MMP13 mRNA levels remained unaffected by intermittent PTHrP. A drop of Sox9 levels and a decreased proliferation rate after 6 hours of PTHrP exposure on day 14 indicated delayed chondroblast formation. Decreased IGFBP-2, -3 and -6 expression as well as decreased IGFBP-2 protein levels in culture supernatants suggested IGF-I-related mechanisms behind anabolic matrix stimulation by intermittent PTHrP.

The significant improvement of MSC chondrogenesis by the optimization of intermittent PTHrP application timing revealed the vast potential of PTHrP to suppress hypertrophy and stimulate chondrogenic matrix deposition. A treatment with PTHrP for 6 hours daily emerged as the most effective treatment mode. IGF-I and Sox-9 related mechanisms are suggested behind anabolic effects and delayed chondroblasts formation, respectively. Thus, similar to the established osteoporosis treatment, daily injections of PTHrP may become clinically relevant to support cartilage repair strategies relying on MSCs like subchondral bone microfracturing and autologous MSC implantation.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 368 - 368
1 Jul 2008
Pound J Green D Roach H Oreffo R
Full Access

Cartilage and bone degeneration are major healthcare problems affecting millions of individuals worldwide. Elucidation of the processes modulating the cell-matrix interactions involved in cartilage or bone formation offer tremendous potential in the development of clinically relevant strategies for cartilage and bone regeneration. We have therefore adopted an ex vivo tissue engineering approach to investigate chondrogenesis and osteogenesis using a mix human mesenchymal progenitor populations encapsulated in biomineralised polysac-charide templates with or without the addition of type-I collagen.

Alginate/chitosan polysaccharide capsules containing 2.5mg/ml type-I collagen and TGF-beta-3 were encapsulated with human bone marrow cells (HBMC), articular chondrocytes or a co-culture at a ratio of 2:1 respectively and placed in a rotating (Synthecon) biore-actor or held in static 2D culture conditions for 28 days, to determine whether the presence of type-I collagen within the alginate could promote the synthesis of an extracellular matrix.

Constructs were stained with alcian blue, sirius red and von Kossa. In bioreactor samples encapsulated with HBMC and type-I collagen, viable cells were present within lacunae, surrounded by a matrix of proteo-glycans and fibrous collagen, which was mineralized. Immunohistochemistry and polarised light microscopy indicated an organised collagenous matrix with extensive expression of type I collagen and bone sialoprotein with small regions of type II collagen. Type X collagen was also expressed indicating the presence of hypertrophic chondrocytes. Within the static HBMC groups, smaller areas of matrix were generated with decreased expression of type-I and type-II collagen. Co-culture bioreactor samples also demonstrated regions of new mineralised bone matrix; however these were less prominent than in the HBMC only groups. No matrix formation was observed in chondrocyte cultures although the cells remained viable as assessed by live/dead staining. Biochemical analysis indicated significantly increased (p< 0.05) DNA in all bioreactor samples in comparison with static constructs and significantly increased protein in HBMC bioreactor constructs in comparison with other cell types.

These studies outline a unique tissue engineering approach, utilizing individual and mixed human mesen-chymal progenitor populations coupled with innovative polysaccharide templates containing type I collagen and bioreactor systems to promote chondrogenic and osteo-genic differentiation.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 65 - 65
1 Apr 2018
Pattappa G Hofmeister I Zellner J Johnstone B Docheva D Angele P
Full Access

Osteoarthritis is a degenerative disease that results in changes in cartilage extracellular matrix. In vitro studies have shown that IL-1β inhibits cartilage formation in chondrocytes or MSCs undergoing chondrogenesis. In vivo, articular chondrocytes and bone marrow reside under hypoxic or physioxic environment (1–5% oxygen) and previous investigations have shown an increase in cartilage matrix proteins and reduced hypertrophy for MSC chondrogenesis, especially for MSCs expanded and differentiated under physioxia. Our hypothesis was that physioxic preconditioning reduces the effects of IL-1β inhibited MSC chondrogenesis.

Methods

Human MSCs (Male donors; aged 18–60 years, n = 6) were isolated from bone marrow and expanded for one passage and split into hyperoxic and physioxic MSC cultures, the latter conditions were isolated and expanded using a hypoxia controlled incubator. MSCs with or without physioxic preconditioning were aliquoted into wells of a 96-well cell culture plate in the presence of 10ng/ml TGF-β1 or in combination with either 0.1 or 0.5ng/ml IL-1ß and centrifuged to form pellets. Pellets were then differentiated under their isolation conditions. Pellets removed from culture on days 7, 14 and 21, were evaluated for wet weight, histological (DMMB staining, collagen type I, II, MMP-13 and TGF-β receptor II) and collagen type II ELISA analysis.

Results

Preconditioned MSCs demonstrated an enhanced collagen type II and GAG production undergoing chondrogenesis compared to hyperoxic pellets. In the presence of IL-1β, preconditioned MSCs reduced the inhibitory effect of IL-1ß compared to the equivalent conditions under hyperoxic, whereby there was a significant increase in wet weight, GAG and collagen type II production (p < 0.05). Furthermore, preconditioning MSCs had reduced collagen type X expression compared to hyperoxic cultures.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_17 | Pages 9 - 9
1 Nov 2017
Shetty A Kim S Alva K Ahmed S
Full Access

Introduction

We describe five results of a novel single stage arthroscopic technique for the treatment of articular cartilage defects of the knee. This involves micro drilling and application of Atelo-collagen (Coltrix) and fibrin gel scaffold.

Materials and Method

The preclinical study involved two groups of rabbits treated with micro-drilling, and micro-drilling with Atelo-collagen and fibrin gel. New cartilage was subjected to staining with H&E for tissue morphology, toluidine blue (collagen) and safranin O (GAG), immunohistochemistry with antibodies for collagen type I and II, and scanning and transmission electron microscopy to analyse the microstructural morphologies. The micro-drilling with Atelo-collagen, fibrin gel scored better than the micro-drilling alone.

Patients (n=30) with symptomatic ICRS grade III/IV chondral defects (lesion size 2–8cm2) are recruited for this prospective study. The surgical procedure involved micro-drilling and application of Atelo–collagen and fibrin gel under CO2 insufflation. Patients underwent morphological evaluation with MRI (T2*-mapping and d-GEMRIC scans). Clinical assessment was done with Lysholm, IKDC and KOOS scores. Radiological assessment was performed with MOCART score.