Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIII | Pages 11 - 11
1 Jul 2012
Smith I Cyrulik K Amyes S Simpson A Hall A
Full Access

In some centres, serial bedside aspirations, in association with intravenous antibiotics, are still an accepted treatment for septic arthritis (Mathews, Postgraduate Medical Journal, 2008). However, there is a risk that bacterial products remain in the joint, even when the bacteria have been destroyed. We have conducted a study to ascertain whether bacterial products alone have an effect on in situ chondrocyte viability.

A hip aspirate (25μl), containing Staphylococcus aureus, from a patient with septic arthritis was added to 5ml culture medium and incubated (37°C) for 48hrs. The solution was then centrifuged (3400g for 10mins) and the supernatant removed.

Cartilage explants were harvested from a bovine metacarpophalangeal joint, placed into the bacterial supernatant and incubated at 37°C. Explants were removed at hourly intervals over a 6-hour period and stained with the fluorescent probes chloromethylfluorescein di-acetate (10μM) and propidium iodide (10μM) to label living chondrocytes green and dead cells red respectively. Following imaging of cartilage by confocal microscopy, the percentage cell death at each time point was obtained using Volocity 4 software.

Chondrocyte death increased markedly with time: 0.04% at 2hrs, 28% at 4hrs and 39% at 6hrs.

This study shows that bacterial products rapidly penetrate the cartilage matrix and have a damaging effect on in situ chondrocyte viability. Further work will clarify the contributions made by the various toxic components in the culture supernatant, but these data support the need to remove the bacteria and their products aggressively as part of the treatment of septic arthritis.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 123 - 123
1 Sep 2012
Dhollander A Verdonk P Verdonk R Verbruggen G Almqvist K
Full Access

Aim

The present study was designed to evaluate the implantation of alginate beads containing human mature allogenic chondrocytes for the treatment of symptomatic cartilage defects in the knee.

Methods

A biodegradable, alginate-based biocompatible scaffold containing human mature allogenic chondrocytes was used for the treatment of chondral and osteochondral lesions in the knee. Twenty-one patients were clinically prospectively evaluated with use of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and a Visual Analogue Scale (VAS) for pain preoperatively and at 3, 6, 9, 12, 24 and 36 months of follow-up.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_6 | Pages 6 - 6
1 Jun 2022
Turnbull G Shu W Picard F Clarke J
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA) and collagen. Chondrocytes and mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture, with accelerated cell growth seen with inclusion of cell spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion, we developed novel composite bioinks that can be triple-crosslinked, facilitating successful chondrocyte and MSC growth in 3D bioprinted scaffolds and in vitro repair of an osteochondral defect model. This offers hope for a new approach to treating AC defects