To analyse the efficacy and safety of
Osteoarthritis (OA) is a major global disease with increasing prevalence. It is one of the most significant causes of disability worldwide and represents a major burden in terms of healthcare delivery and impact on the quality of life of patients. It is a cause of severe chronic pain and has given rise to alarming levels of opioid use and addiction. Despite this prevalence, there are no disease-modifying treatments which delay or reverse the degrative changes within joints which are characteristics of the disease. All treatments are symptom-modifying with the exception of joint arthroplasty, which is currently the most common surgical procedure carried out in US hospitals. Several pharmaceutical and biological interventions have been tested in recent years, including metalloproteinase inhibitors, chondrogenic agents such as Kartogenin, IL-1 antagonists and monoclonal antibodies. So far, none of these has provided an effective disease-modifying treatment.
Disease modifying approaches are commonly applied in OA patients. An aging society with better life expectancies is increasing in Europe and the globe. Orthobiologics cover intraarticular hyaluronan injections and also
Cell-based therapies have taken the emerging field in many clinical directions. Among them, orthopaedic surgery is one of the most promising directions – due to the clinical needs, and because of the availability of the advanced cell-based constructs dedicated to bone and cartilage regeneration. The current practical clinical input is, however, below expectations – because of numerous difficulties which have their source in scientific, practical, finance and legal issues. Regarding legal issues, Advanced Therapy Investigational Medicinal Products (ATIMP) are regulated by three different legal orders. As medicines (according to the EU law, ATIMP is a pharmaceutical) – they are subject to pharmaceutical law; as cell-containing specimens – to cell and tissue banking regulations; as tested by registered clinical trials - they are subject to Good Clinical Practice rules and regulations. Formal requirements coming from these three areas are completely different, sometimes contradictory and incompatible with the specific nature of cell-based products. At the same time they involves the need for huge financial expenditures. We discuss these issues from the perspective of the university laboratory, which currently conducts clinical trials of the ATIMPs for three different clinical indications and, at the same time, has experience in the basic and applied scientific work at the laboratory level – towards improvement of osteogenic capacity of stem cells. With the undoubtful need of well documented scientific results, which is accompanied by complicated and imperfect regulations, we think that the scientific community focused around
Background. Definitive proof is lacking on mesenchymal stem cell (MSCs)
We hypothesised that meniscal tears treated with mesenchymal stem cells (MSCs) together with a conventional suturing technique would show improved healing compared with those treated by a conventional suturing technique alone. In a controlled laboratory study 28 adult pigs (56 knees) underwent meniscal procedures after the creation of a radial incision to represent a tear. Group 1 (n = 9) had a radial meniscal tear which was left untreated. In group 2 (n = 19) the incision was repaired with sutures and fibrin glue and in group 3, the experimental group (n = 28), treatment was by MSCs, suturing and fibrin glue. At eight weeks, macroscopic examination of group 1 showed no healing in any specimens. In group 2 no healing was found in 12 specimens and incomplete healing in seven. The experimental group 3 had 21 specimens with complete healing, five with incomplete healing and two with no healing. Between the experimental group and each of the control groups this difference was significant (p <
0.001). The histological and macroscopic findings showed that the repair of meniscal tears in the avascular zone was significantly improved with MSCs, but that the mechanical properties of the healed menisci remained reduced.
Bone marrow mesenchymal stromal cells were aspirated from immature male green fluorescent protein transgenic rats and cultured in a monolayer. Four weeks after the creation of the osteochondral defect, the rats were divided into three groups of 18: the control group, treated with an intra-articular injection of phosphate-buffered saline only; the drilling group, treated with an intra-articular injection of phosphate-buffered saline with a bone marrow-stimulating procedure; and the bone marrow mesenchymal stromal cells group, treated with an intra-articular injection of bone marrow mesenchymal stromal cells plus a bone marrow-stimulating procedure. The rats were then killed at 4, 8 and 12 weeks after treatment and examined. The histological scores were significantly better in the bone marrow mesenchymal stromal cells group than in the control and drilling groups at all time points (p <
0.05). The fluorescence of the green fluorescent protein-positive cells could be observed in specimens four weeks after treatment.