Advertisement for orthosearch.org.uk
Results 1 - 20 of 32
Results per page:
Bone & Joint Research
Vol. 14, Issue 2 | Pages 143 - 154
25 Feb 2025
Bühler D Hilpert M Barbero A Müller AM Müller SA Martin I Pelttari K

Aims. Our aim was to investigate occurrence of senescent cells directly in tendon tissue biopsies from patients with chronic shoulder tendinopathies, and to correlate senescence with Enhancer of zeste 2 (EZH2) expression, the functional subunit of the epigenetic master regulator polycomb repressive complex. Methods. Human proximal long head of biceps tendons from patients with different chronic shoulder pathologies (n = 22), and controls from patients with humerus fracture (n = 6) and pathology (n = 4), were histologically scored for degeneration and analyzed for gene and protein expression of tendon specific factors, senescence markers, and EZH2. Tissues were further exposed to senotherapeutic compounds and the USA Food and Drugs Administration-approved selective EZH2 inhibitor EPZ-6438 and their senescence-associated secretory phenotype (SASP) assessed. Results. Expression of senescence markers (CDKN2A/p16, CDKN2D/p19) and EZH2 was significantly higher in tendinopathies compared to fracture or healthy tissue controls and positively correlated with the degree of tissue degeneration. Immunofluorescent stainings demonstrated colocalization of p16 and p19 with EZH2 in tenocytes. Treatment of tendon biopsies with EPZ-6438 reduced secretion of a panel of SASP factors, including interleukin-6 (IL6), IL8, matrix metalloproteinase-3 (MMP3) or GRO1, similarly to the senotherapeutic compound AG490. Conclusion. We demonstrate that senescence traits accumulate in pathological tendon tissues and positively correlate with tissue degeneration. Increased expression of CDKN2A/p16 and CDKN2D/p19 coincides with EZH2 expression, while its inhibition decreased the secretion of SASP factors, indicating a possible regulatory role of EZH2 in tenocyte senescence in tendinopathies. Reduction of cellular senescence, e.g. with EPZ-6438, opens ways to new potential therapeutic approaches for enhancing regeneration in chronic tendinopathies. Cite this article: Bone Joint Res 2025;14(2):143–154


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 32 - 32
1 Nov 2021
Amadio PC
Full Access

Carpal tunnel syndrome (CTS) is the most common condition affecting the hand, with a prevalence of 2–3% in most populations, and a lifetime incidence over 10%. There is consensus that CTS results from increased pressure in the carpal tunnel, which eventually affects nerve function, but, aside from direct trauma and space occupying lesions, there is no consensus on what causes the pressure to rise. In the absence of an identifiable biological mechanism, the most common treatment involves surgical opening of the carpal tunnel. Recent data suggests that CTS patients demonstrate, in the carpal tunnel synovium and subsynovial connective tissue (SSCT), evidence of cellular senescence, with a senescence associated secretory phenotype (SASP). This finding suggests the potential for a biological treatment for CTS with senolytic drugs. This presentation will review the evidence for CTS as a disease of cellular senescence, and our preliminary data on the effects of senolytics, including in a relevant animal model of CTS and SSCT fibrosis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 39 - 39
1 Sep 2019
Daneshnia Y Snuggs J Scott A Le Maitre C
Full Access

Background. Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). Degenerate discs are associated with accelerated cellular senescence. Cell senescence is associated with a secretory phenotype characterised by increased production of catabolic enzymes and cytokines. However to date, the mechanism of cell senescence within disc degeneration is unclear. Senescence can be induced by increased replication or induced by stress such as reactive oxygen species or cytokines. This study investigated the association of cellular senescence with markers of DNA damage and presence of cytoplasmic DNA (which in cancer cells has been shown to be a key regulator of the secretory phenotype), to determine mechanisms of senescence in disc degeneration. Methods and Results. Immunohistochemistry for the senescence marker: p16. INK4A. was firstly utilised to screen human intervertebral discs for discs displaying at least 30% immunopostivity. These discs were then subsequently analysed for immunopostivity for DNA damage markers γH2AX and cGAS and the presence of cytoplasmic DNA. The number of immunopositive cells for p16. INK4A. positively correlated with the expression of γH2AX and cGAS. Senescent cells were also associated with the presence of cytoplasmic DNA. Conclusions. These new findings elucidated a role of cGAS and γH2AX as a link from genotoxic stress to cytokine expression, which is associated with senescent cells. The findings indicate that cellular senescence in vivo is associated with DNA damage and presence of cytoplasmic DNA. Whether this DNA damage is a result of replicative senescence or stress induced is currently being investigated in vitro. No conflicts of interest. Sources of funding: Funded by ARUK and MRC


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 29 - 29
1 Nov 2018
Daneshnia Y Snuggs J Scott A Le Maitre C
Full Access

Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). Degenerate discs are associated with accelerated cellular senescence. Cell senescence is associated with a secretory phenotype characterised by increased production of catabolic enzymes and cytokines. However, to date, the mechanism of cell senescence within disc degeneration is unclear. Senescence can be induced by increased replication or induced by stress such as reactive oxygen species or cytokines. This study investigated the association of cellular senescence with markers of DNA damage and presence of cytoplasmic DNA (which in cancer cells has been shown to be a key regulator of the secretory phenotype), to determine mechanisms of senescence in disc degeneration. Immunohistochemistry for the senescence marker: p16INK4A was firstly utilised to screen human intervertebral discs for discs displaying at least 30% immunopostivity. These discs were then subsequently analysed for immunopostivity for DNA damage markers γH2AX and cGAS and the presence of cytoplasmic DNA. The number of immunopositive cells for p16 INK4A positively correlated with the expression of γH2AX and cGAS. Senescent cells were also associated with the presence of cytoplasmic DNA. These new findings elucidated a role of cGAS and γH2AX as a link from genotoxic stress to cytokine expression which is associated with senescent cells. The findings indicate that cellular senescence in vivo is associated with DNA damage and presence of cytoplasmic DNA. Whether this DNA damage is a result of replicative senescence or stress induced is currently being investigated in vitro


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 111 - 111
11 Apr 2023
Kapetanos K Asimakopoulos D Christodoulou N Vogt A Khan W
Full Access

The use of mesenchymal stromal cells (MSCs) in regenerative medicine and tissue engineering is well established, given their properties of self-renewal and differentiation. However, several studies have shown that these properties diminish with age, and understanding the pathways involved are important to provide regenerative therapies in an ageing population. In this PRISMA systematic review, we investigated the effects of chronological donor ageing on the senescence of MSCs. We identified 3023 studies after searching four databases including PubMed, Web of Science, Cochrane, and Medline. Nine studies met the inclusion and exclusion criteria and were included in the final analyses. These studies showed an increase in the expression of p21, p53, p16, ROS, and NF- B with chronological age. This implies an activated DNA damage response (DDR), as well as increased levels of stress and inflammation in the MSCs of older donors. Additionally, highlighting the effects of an activated DDR in cells from older donors, a decrease in the expression of proliferative markers including Ki67, MAPK pathway elements, and Wnt/ -catenin pathway elements was observed. Furthermore, we found an increase in the levels of SA- -galactosidase, a specific marker of cellular senescence. Together, these findings support an association between chronological age and MSC senescence. The precise threshold for chronological age where the reported changes become significant is yet to be defined and should form the basis for further scientific investigations. The outcomes of this review should direct further investigations into reversing the biological effects of chronological age on the MSC senescence phenotype


Bone & Joint Research
Vol. 6, Issue 7 | Pages 414 - 422
1 Jul 2017
Phetfong J Tawonsawatruk T Seenprachawong K Srisarin A Isarankura-Na-Ayudhya C Supokawej A

Objectives. Adipose-derived mesenchymal stem cells (ADMSCs) are a promising strategy for orthopaedic applications, particularly in bone repair. Ex vivo expansion of ADMSCs is required to obtain sufficient cell numbers. Xenogenic supplements should be avoided in order to minimise the risk of infections and immunological reactions. Human platelet lysate and human plasma may be an excellent material source for ADMSC expansion. In the present study, use of blood products after their recommended transfusion date to prepare human platelet lysate (HPL) and human plasma (Hplasma) was evaluated for in vitro culture expansion and osteogenesis of ADMSCs. Methods. Human ADMSCs were cultured in medium supplemented with HPL, Hplasma and a combination of HPL and Hplasma (HPL+Hplasma). Characteristics of these ADMSCs, including osteogenesis, were evaluated in comparison with those cultured in fetal bovine serum (FBS). Results. HPL and HPL+Hplasma had a significantly greater growth-promoting effect than FBS, while Hplasma exhibited a similar growth-promoting effect to that of FBS. ADMSCs cultured in HPL and/or Hplasma generated more colony-forming unit fibroblasts (CFU-F) than those cultured in FBS. After long-term culture, ADMSCs cultured in HPL and/or Hplasma showed reduced cellular senescence, retained typical cell phenotypes, and retained differentiation capacities into osteogenic and adipogenic lineages. Conclusion. HPL and Hplasma prepared from blood products after their recommended transfusion date can be used as an alternative and effective source for large-scale ex vivo expansion of ADMSCs. Cite this article: J. Phetfong, T. Tawonsawatruk, K. Seenprachawong, A. Srisarin, C. Isarankura-Na-Ayudhya, A. Supokawej. Re-using blood products as an alternative supplement in the optimisation of clinical-grade adipose-derived mesenchymal stem cell culture. Bone Joint Res 2017;6:414–422. DOI: 10.1302/2046-3758.67.BJR-2016-0342.R1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 37 - 37
2 Jan 2024
Lian W
Full Access

Development of osteoarthritis (OA) correlates with epigenetic alteration in chondrocytes. H3K27me3 demethylase UTX is known to regulate tissue homeostasis, but its role in the homeostasis of articulating joint tissue is poorly understood. Forced UTX expression upregulated H3K27me3 enrichment at the Sox9 promoter region to inhibit key extracellular matrix (ECM) molecules, like e.g. type II collagen, aggrecan, and glycosaminoglycans in articular chondrocytes. Utx loss in vitro altered the H3K27me3-binding epigenomic landscape, which contributes to mitochondrial activity, cellular senescence, and cartilage development. Functional target genes of Utx comprise insulin-like growth factor 2 (Igf2) and polycomb repressive complex 2 (PRC2) core components Eed and Suz12. Specifically, Utx deletion promoted Tfam transcription, mitochondrial respiration, ATP production and Igf2 transcription, but inhibited Eed and Suz12 expression. Igf2 inhibition or forced Eed or Suz12 expression increased H3K27 trimethylation and H3K27me3 enrichment at the Sox9 promoter, compromising Utx loss-induced ECM overproduction. Overexpression of Utx in murine knee joints aggravated OA development, including articular cartilage damage, synovitis, osteophyte formation, and subchondral bone loss. Transgenic mice with a chondrocytespecific Utx knockout develop thicker articular cartilage as compared to wild-type controls and show fewer gonarthrotic symptoms during destabilized medial meniscus- and collagenase-induced joint injury. In summary, UTX represses chondrocytic activity and accelerates cartilage degradation during OA, while Utx loss promotes cartilage integrity through epigenetic stimulation of mitochondrial biogenesis and Igf2 transcription. This highlights a novel noncanonical role of Utx that regulates articular chondrocyte anabolism and OA development


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 77 - 77
17 Apr 2023
Vogt A Darlington I Birch M Brookes R McCaskie A Khan W
Full Access

Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties. We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory based experiments to assess these properties. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the bone fragments using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for CD34 and CD45. The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. Clear differences between the younger and older patients were indicated. Chronological age-related changes in MSC function have important implications on the use of these cells in clinical applications for an ageing population. The results from this study will be used to plan further work looking at the effects of chronological age on cellular senescence and identify pathways that could be targeted to potentially reverse any age-related changes


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 94 - 94
2 Jan 2024
Lin Y Lian W Chen Y Jahr H Wang F
Full Access

Obesity is correlated with the development of osteoporotic diseases. Gut microbiota-derived metabolite trimethylamine-n-oxide (TMAO) accelerates obesity-mediated tissue deterioration. This study was aimed to investigate what role TMAO may play in osteoporosis development during obesity. Mice were fed with high-fat diet (HFD; 60 kcal% fat) or chow diet (CD; 10 kcal% fat) or 0.2% TMAO in drinking water for 6 months. Body adiposis and bone microstructure were investigated using μCT imaging. Gut microbiome and serum metabolome were characterized using 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry. Osteogenic differentiation of bone-marrow mesenchymal cells was quantified using RT-PCR and von Kossa staining. Cellular senescence was evaluated by key senescence markers p16, p21, p53, and senescence association β-galactosidase staining. HFD-fed mice developed hyperglycemia, body adiposis and osteoporosis signs, including low bone mineral density, sparse trabecular microarchitecture, and decreased biomechanical strength. HFD consumption induced gut microbiota dysbiosis, which revealed a high Firmicutes/Bacteroidetes ratio and decreased α-diversity and abundances of beneficial microorganisms Akkermansiaceae, Lactobacillaceae, and Bifidobacteriaceae. Serum metabolome uncovered increased serum L-carnitine and TMAO levels in HFD-fed mice. Of note, transplantation of fecal microbiota from CD-fed mice compromised HFD consumption-induced TMAO overproduction and attenuated loss in bone mass, trabecular microstructure, and bone formation rate. TMAO treatment inhibited trabecular and cortical bone mass and biomechanical characteristics; and repressed osteogenic differentiation capacity of bone-marrow mesenchymal cells. Mechanistically, TMAO accelerated mitochondrial dysfunction and senescence program, interrupted mineralized matrix production in osteoblasts. Gut microbial metabolite TMAO induced osteoblast dysfunction, accelerating the development of obesity-induced skeletal deterioration. This study, for the first time, conveys a productive insight into the catabolic role of gut microflora metabolite TMAO in regulating osteoblast activity and bone tissue integrity during obesity


Senescent chondrocyte and subchondral osteoclast overburden aggravate inflammatory cytokine and pro-catabolic proteinase overproduction, accelerating extracellular matrix degradation and pain during osteoarthritis (OA). Fibronectin type III domain containing 5 (FNDC5) is found to promote tissue homeostasis and alleviate inflammation. This study aimed to characterize what role Fndc5 may play in chondrocyte aging and OA development. Serum and macroscopically healthy and osteoarthritic cartilage were biopsied from patients with knee OA who received total knee replacement. Murine chondrocytes were transfected with Fndc5 RNAi or cDNA. Mice overexpressing Fndc5 (Fndc5Tg) were operated to have destabilized medial meniscus mediated (DMM) joint injury as an experimental OA model. Cellular senescence was characterized using RT-PCR analysis of p16INK4A, p21CIP1, and p53 expression together with ß-galactosidase activity staining. Articular cartilage damage and synovitis were graded using OARSI scores. Osteophyte formation and mechanical allodynia were quantified using microCT imaging and von Frey filament, respectively. Osteoclast formation was examined using tartrate-resistant acid phosphatase staining. Senescent chondrocyte and subchondral osteoclast overburden together with decreased serum FNDC5 levels were present in human osteoarthritic cartilage. Fndc5 knockdown upregulated senescence program together with increased IL-6, MMP9 and Adamts5 expression, whereas Alcian blue-stained glycosaminoglycan production were inhibited. Forced Fndc5 expression repressed senescence, apoptosis and IL-6 expression, reversing proliferation and extracellular matrix production in inflamed chondrocytes. Fndc5Tg mice showed few OA signs, including articular cartilage erosion, synovitis, osteophyte formation, subchondral plate sclerosis and mechanical allodynia together with decreased IL-6 production and few senescent chondrocytes and subchondral osteoclast formation during DMM-induced joint injury. Mechanistically, Fndc5 reversed histone H3K27me3-mediated IL-6 transcription repression to reduce reactive oxygen species production. Fndc5 loss correlated with OA development. It was indispensable in chondrocyte growth and anabolism. This study sheds light onto the anti-ageing and anti-inflammatory actions of Fndc5 to chondrocytes; and highlights the chondroprotective function of Fndc5 to compromise OA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 49 - 49
14 Nov 2024
Chen YS Lian WS Lin Y Wang F
Full Access

Introduction. Promoting bone mass homeostasis keeps skeleton away from osteoporosis. a-Ketoglutarate (a-KG) is an indispensable intermediate of tricarboxylic acid cycle (TCA) process for cellular energy production. a-KG mitigates cellular senescence, tissue degeneration, and oxidative stress. We investigated whether a-KG affected osteoblast activity or osteoporosis development. Method. Serum and bone specimens were biopsied from 26 patients with osteoporosis or 24 patients without osteoporosis who required spinal surgery. Ovariectomized or aged mice were fed 0.25% or 0.75% a-KG in drinking water for 8 – 12 weeks ad libitum. Bone mineral density, trabecular/cortical bone microarchitecture, mechanical strength, bone formation, and osteoclastic erosion were investigated using mCT, material testing device, in vivo calcein labelling, and TRAP histochemical staining. Serum a-KG, osteocalcin, and TRAP5b levels were quantified using ELISA kits. Bone-marrow mesenchymal cells and macrophages were incubated osteogenic and osteoclastogenic media. Histone H3K27me3 levels and enrichment were investigated using immunoblotting and chromatin precipitation-PCR. Result. Serum a-KG levels in patients with osteoporosis were less than controls; and were correlated with T-scores of hips (R2 = 0.6471, P < 0.0001) and lumbar spine (R2 = 0.7235, P < 0.001) in osteoporosis (AUC = 0.9941, P < 0.001). a-KG supplement compromised a plethora of osteoporosis signs in ovariectomized or aged mice, including bone mass loss, trabecular bone microarchitecture deterioration, and mechanical strength loss. It elevated serum osteocalcin levels and decreased serum TRAP5b. a-KG preserved caclein-labelling bone formation and repressed osteoclast resorption. It reversed osteogenic differentiation of bone-marrow stromal cells and reduced osteoclast formation in ovariectomized mice. Mechanically, a-KG attenuated H3K27 hypermethylation and Runx2 transcription repression, improving mineralized matrix production in osteogenic cells. Conclusion. Decreased serum a-KG is correlated with human and murine osteoporosis. a-KG reverses bone loss by repressing histone methylation in osteoblasts. This study highlighted a-KG supplement as a new biochemical option for protecting osteoporosis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 51 - 51
17 Nov 2023
Vogt A Darlington I Brooks R Birch M McCaskie A Khan W
Full Access

Abstract. Objectives. Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age and gender is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age and gender on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties. Methods and Results. We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age and gender on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory-based experiments to assess these properties. Compare the extent of the effect of age on MSC cell marker expression, proliferation and pathways. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the synovium, fat pad and bone fragments using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for antibody cocktail (eg included CD34, CD45). The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. At P2 after extracting RNA, we investigate the gene analysis using Bulk seq. Clear differences between the younger and older patients and gender were indicated. Conclusions. Chronological age and gender-related changes in MSC function have important implications on the use of these cells in clinical applications for an ageing population. The results from this study will be used to plan further work looking at the effects of chronological age and gender on cellular senescence and identify pathways that could be targeted to potentially reverse any age and gender-related changes. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 30 - 30
1 Dec 2021
Vogt A Darlington I Brooks R Birch M McCaskie A Khan W
Full Access

Abstract. Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties. We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory based experiments to assess these properties. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the infrapatellar fat pad using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for CD34 and CD45. The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. Chronological age-related changes in MSC function have important implications on the use of these cells in clinical applications for an ageing population. The results from this study will be used to plan further work looking at the effects of chronological age on cellular senescence and identify pathways that could be targeted to potentially reverse any age-related changes


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 94 - 94
1 Nov 2021
Chen Y Lian W Wang F
Full Access

Introduction and Objective. Senescent bone cell overburden accelerates osteoporosis. Epigenetic alteration, including microRNA signalling and DND methylation, is one of prominent features of cellular senescence. This study aimed to investigate what role microRNA-29a signalling may play in the development of senile osteoporosis. Materials and Methods. Bone biopsy and serum were harvested from 13 young patients and 15 senior patients who required spine surgery. Bone mass, microstructure, and biomechanics of miR-29a knockout mice (miR-29aKO) and miR-29a transgenic mice (miR-29aTg) were probed using mCT imaging and three-point bending material test. Senescent cells were probed using senescence-associated b-galactosidase (SA-b-gal) staining. Transcriptomic landscapes of osteoblasts were characterized using whole genome microarray and KEGG bioinformatics. miR-29a and senescence markers p16. INK4a. , p21. Waf/cipl. and inflammatory cytokines were quantified using RT-PCR. DNA methylome was probed using methylation-specific PCR and 5-methylcytosine immunoblotting. Results. Senescent osteoblast overburden, DNA hypermethylation and oxidative damage together with significant decreases in serum miR-29a levels were present in bone specimens of aged patients. miR-29aKO mice showed a phenotype of skeletal underdevelopment, low bone mineral density and weak biomechanics. miR-29a knockout worsened age-induced bone mass and microstructure deterioration. Of note, aged miR-29aTg mice showed less bone loss and fatty marrow than aged wild-type mice. Transgenic overexpression of miR-29s compromised age-dysregulated osteogenic differentiation capacity of bone-marrow mesenchymal cells. In vitro, miR-29a promoted transcriptomic landscapes of antioxidant proteins in osteoblasts. The microRNA interrupted DNA methyltransferase (Dnmt3b)-mediated DNA methylation, inhibiting reactive oxygen radicals burst, IL-6 and RANKL production, and a plethora of senescent activity, including increased p16. INK4a. , p21. Waf/cipl. signalling and SA-b-gal activity. Conclusions. miR-29a loss is correlated with human age-mediated osteoporosis. miR-29a signalling is indispensable in bone mase homeostasis and microstructure integrity. Gain of miR-29a function is advantageous to delay age-induced bone loss through promoting antioxidant proteins to inhibit DNA hypermethylation-mediated osteoblast senescence. Collective investigations shine light onto the anabolic effects miR-29a signalling to bone integrity and highlight a new epigenetic protection strategy through controlling microRNA signalling to delay osteoblast senescence and senile osteoporosis development


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 53 - 53
1 Aug 2020
Cherif H Bisson D Kocabas S Haglund L
Full Access

Intervertebral discs (IVDs) degeneration is one of the major causes of back pain. Upon degeneration, the IVDs tissue become inflamed, and this inflammatory microenvironment may cause discogenic pain. Cellular senescence is a state of stable cell cycle arrest in response to a variety of cellular stresses including oxidative stress and adverse load. The accumulation of senescent IVDs cells in the tissue suggest a crucial role in the initiation and development of painful IVD degeneration. Senescent cells secrete an array of cytokines, chemokines, growth factors, and proteases known as the senescence-associated secretory phenotype (SASP). The SASP promote matrix catabolism and inflammation in IVDs thereby accelerating the process of degeneration. In this study, we quantified the level of senescence in degenerate and non-degenerate IVDs and we evaluated the potential of two natural compounds to remove senescent cells and promote overall matrix production of the remaining cells. Human IVDs were obtained from organ donors. Pellet or monolayer cultures were prepared from freshly isolated cells and cultured in the presence or absence of two natural compounds: Curcumin and its metabolite vanillin. Monolayer cultures were analyzed after four days and pellets after 21 days for the effect of senolysis. A cytotoxicity study was performed using Alamar blue assay. Following treatment, RNA was extracted, and gene expression of senescence and inflammatory markers was evaluated by real-time q-PCR using the comparative ΔΔCt method. Also, protein expression of p16, Ki-67 and Caspase-3 were evaluated in fixed pellets or monolayer cultures and total number of cells was counted on consecutive sections using DAPI and Hematoxylin. Proteoglycan content was evaluated using SafraninO staining or DMMB assay to measure sulfated glycosaminoglycan (sGAG) and antibodies were used to stain for collagen type II expression. We observed 40% higher level of senescent cells in degenerate compare to the non-degenerate discs form unrelated individuals and a 10% increase when we compare degenerate compare to the non-degenerate discs of the same individual. Using the optimal effective and safe doses, curcumin and vanillin cleared 15% of the senescent cells in monolayer and up to 80% in pellet cultures. Also, they increased the number of proliferating and apoptotic cells in both monolayer and pellets cultures. The increase in apoptotic cell number and caspase-3/7 activity was specific to degenerate cells. Following treatment, mRNA expression levels of SASP factors were decreased by four to 32-fold compared to the untreated groups. Senescent cell clearance decreased, protein expression of MMP-3 and −13 by 15 and 50% and proinflammatory cytokines levels of IL-1, IL-6 and IL-8 by 42, 63 and 58 %. Overall matrix content was increased following treatment as validated by an increase in proteoglycan content in pellet cultures and surrounding culture media. This work identifies novel senolytic drugs for the treatment of IVD degeneration. Senolytic drugs could provide therapeutic interventions that ultimately, decrease pain and provide a better quality of life of patients living with IVDs degeneration and low back pain


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 56 - 56
1 Jul 2020
Tsiapalis D De Pieri A Sallent I Galway N Zeugolis D Galway N Korntner S
Full Access

Cellular therapies play an important role in tendon tissue engineering with tenocytes being described as the most prominent cell population if available in large numbers. However, in vitro expansion of tenocytes in standard culture leads to phenotypic drift and cellular senescence. Recent work suggests that maintenance of tenogenic phenotype in vitro can be achieved by recapitulating different aspects of the native tendon microenvironment. One approach used to modulate the in vitro microenvironment and enhance extracellular matrix (ECM) deposition is macromolecular crowding (MMC). MMC is based on the addition of inert macromolecules to the culture media mimicking the dense extracellular matrix. In addition, as tendon has been described to be a relatively avascular and hypoxic tissue and low oxygen tension can stimulate collagen synthesis and cross-linking, we venture to assess the synergistic effect of MMC and low oxygen tension on human tenocyte phenotype maintenance by enhancing synthesis and deposition of tissue-specific ECM. Human tendons were kindly provided from University Hospital Galway, after obtaining appropriate licenses, ethical approvals and patient consent. Afterwards, tenocytes were extracted using the migration method. Experiments were conducted at passage three. Optimization of MMC conditions was assessed using 50 to 500 μg/ml carrageenan (Sigma Aldrich, UK). For variable oxygen tension cultures, tenocytes were incubated in a Coy Lab (USA) hypoxia chamber. ECM synthesis and deposition were assessed using SDS-PAGE (BioRad, UK) and immunocytochemistry (ABCAM, UK) analysis. Protein analysis for Scleraxis (ABCAM, UK) was performed using western blot. Gene analysis was conducted using a gene array (Roche, Ireland). Cell morphology was assessed using bright-field microscopy. All experiments were performed at least in triplicate. MINITAB (version 16, Minitab, Inc.) was used for statistical analysis. Two-sample t-test for pairwise comparisons and ANOVA for multiple comparisons were conducted. SDS-PAGE and immunocytochemistry analysis demonstrated that human tenocytes treated with the optimal MMC concentration at 2% oxygen tension showed increased synthesis and deposition of collagen type I, the major component of tendon ECM. Moreover, immunocytochemistry for the tendon-specific ECM proteins collagen type III, V, VI and fibronectin illustrated enhanced deposition when cells were treated with MMC at 2% oxygen tension. In addition, protein analysis revealed elevated dexpression of the tendon-specific protein Sclearaxis, while a detailed gene analysis revealed upregulation of tendon-related genes and downregulation of trans-differentiation markers again when cells cultured with MMC at 2% oxygen tension. Finally, low oxygen tension and MMC did not affect the metabolic activity, proliferation and viability of human tenocytes. Collectively, results suggest that the synergistic effect of MMC and low oxygen tension can accelerate the formation of ECM-rich substitutes, which stimulates tenogenic phenotype maintenance. Currently, the addition of substrate aligned topography together with MMC and hypoxia is being investigated in this multifactorial study for the development of an implantable device for tendon regeneration


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 110 - 110
1 Nov 2018
Tsiapalis D Zeugolis D
Full Access

Cellular therapies play an important role in tendon tissue engineering with tenocytes being described as the most prominent cell population if available in large numbers. In vitro expansion of tenocytes in standard culture leads to phenotypic drift and cellular senescence. Maintenance of tenogenic phenotype in vitro can be achieved by recapitulating different aspects of the tendon microenvironment. One approach used to modulate in vitro microenvironment and enhance extracellular matrix (ECM) deposition is macromolecular crowding (MMC). In addition, as tendon has been described to be a relatively avascular and hypoxic tissue and low oxygen tension can stimulate collagen synthesis and cross-linking through the activation of hypoxia-inducible factor 1-alpha (HIF1-α), we venture to assess the synergistic effect of MMC and low oxygen tension on human tenocyte phenotype maintenance. SDS-PAGE and immunocytochemistry analysis demonstrated that human tenocytes treated with MMC at 2 % oxygen tension showed increased synthesis and deposition of collagen type I. Moreover, immunocytochemistry for the tendon-specific ECM proteins collagen type III, V, VI and fibronectin illustrated enhanced deposition when cells were treated with MMC at 2 % oxygen tension. In addition, western blot analysis revealed increased expression of tendon-specific protein Scleraxis, while a detailed gene analysis illustrated upregulation of tendon-specific genes and downregulation of trans-differentiation genes again when cells cultured with MMC under hypoxic conditions. Collectively, results suggest that the synergistic effect of MMC and low oxygen tension can accelerate the formation of ECM-rich substitutes, which stimulates tenogenic phenotype maintenance


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 484 - 484
1 Nov 2011
Heathfield S Hoyland J
Full Access

Background and Aims: Low back pain has been attributed to degeneration of the intervertebral disc (IVD). Increased evidence of senescence biomarkers, including the protein caveolin-1, during IVD degeneration has been demonstrated and linked with disease development rather than ageing per se, suggesting that a particular type of senescence, stress-induced premature senescence (SIPS), occurs in disc degeneration. SIPS can be induced by cytokines such as interleukin-1 (IL-1 Since IL-1 is known to be an important mediator of the catabolic events in IVD degeneration we sought to investigate whether IL-1 induces expression of the senescence biomarker caveolin-1 in IVD cells and whether its induction is associated with markers of cell senescence. Methods: Human nucleus pulposus (NP) cells cultured in monolayer were treated for 24 hours with 10ng/ml IL-1 Quantitative real-time RT-PCR was used to assess gene expression for caveolin-1 and cell cycle inhibitors p53, p21 and p16INK4a. Cells were stained for senescence-associated-galactosidase and flow cytometry performed to analyse cell cycle position. Results: IL-1 treatment induced transcription of caveolin-1 at 8 hours after the start of treatment. This coincided with increased expression of the cell cycle inhibitors p21 and p16INK4a expression at 2 hours and p21 and p53 at 8 hours. Flow cytometry revealed that IL-1 treatment caused a shift away from the S phase of the cell cycle and treated cells exhibited senescence-associated-galactosidase staining. Conclusion: Our findings indicate that IL-1 induces caveolin expression and features of cellular senescence in human NP cells suggesting a role for IL-1 and caveolin-1 in SIPS within the human IVD. Conflicts of Interest: None. Source of Funding: Furlong Research Charitable Foundation


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 349 - 349
1 May 2009
Mareddy S Crawford R Xiao Y
Full Access

Bone Tissue Engineering Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. Adult mesenchymal stem cells (MSCs) are a topic of immense research interest in the field of tissue engineering. Since, depletion of multipotent cells has been implicated in degenerative joint diseases, cell based therapies have been proposed for tissue regeneration, especially for cartilage repair. The aim of the present study is to focus on the possibility of deriving and expanding multipotential MSCs from the heterogeneous bone marrow stromal samples of patients with osteoarthritis (OA) by characterising MSCs at the single cell level. Single cell clonal cultures were established by limiting dilution of marrow stromal cells from three OA patients. A total of 14 clones with a wide variation in their cell doubling time were isolated. The clones were grouped into fast-growing and slow-growing clones. All except one of the fast-growing clones were tripotential. However the slow-growing clones showed limited differentiation potential and morphological changes associated with cellular senescence with extended duration in culture. Flow cytometric analysis did not depict any difference in the expression of the selected putative MSC cell surface markers CD29, CD44, CD90, CD105 and CD166 between fast-growing and slow-growing clones indicating a strong need to investigate for novel cell-surface markers. Further, proteomic analysis to understand the sub-cellular processes responsible for the existence of varying sub-populations identified 11 differentially expressed proteins. These proteins were reported to be associated with cellular organization, signal transduction, energy pathways and stress related proteins. Identification of signaling pathway proteins and cell cycle related proteins, such as calmodulin and caldesmon in the clonal populations, suggest that high-throughput proteomic technologies like two dimensional liquid chromatography (2D LC) coupled with mass spectrometry (MS) may facilitate the discovery of therapeutically useful biomarkers. This study demonstrated the existence of a fast-growing multipotential MSC population from bone marrow samples of patients with OA. Therefore, despite a supposedly smaller stem cell compartment in these patients, we demonstrate here that they can still yield a potentially therapeutically useful source of syngeneic MSCs


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 17 - 17
1 Jul 2014
Nasto L Wang D Rasile Robinson A Ngo K Pola E Sowa G Robbins P Kang J Niedernhofer L Vo N
Full Access

Summary Statement. DNA damage induced by systemic drugs or local γ-irradiation drives disc degeneration and DNA repair ability is extremely important to help prevent bad effects of genotoxins (DNA damage inducing agents) on disc. Introduction. DNA damage (genotoxic stress) and deficiency of intracellular DNA repair mechanisms strongly contribute to biological aging. Moreover, aging is a primary risk factor for loss of disc matrix proteoglycan (PG) and intervertebral disc degeneration (IDD). Indeed, our previous evidences in DNA repair deficient Ercc1−/Δ mouse model strongly suggest that systemic aging and IDD correlate with nuclear DNA damage. Thus the aim of the current study was to test whether systemic or local (spine) genotoxic stress can induce disc degeneration and how DNA repair ability could help prevent negative effects of DNA damage on IDD. To test this hypothesis a total of twelve Ercc1−/Δ mice (DNA repair deficient) and twelve wild-type mice (DNA repair competent) were challenged with two separate genotoxins to induce DNA damage, i.e. chemotherapeutic crosslinking agent mechlorethamine (MEC) and whole-body gamma irradiation. Local effects of gamma irradiation were also tested in six wild-type mice. Methods. Ercc1. −/Δ. mice (n=6) and their wild-type littermates were chronically exposed to genotoxic stress beginning at 8 wks of age by subcutaneous administration of a subtoxic dose of MEC (8 μg/kg once per week for 6 weeks). Similarly, six Ercc1. −/Δ. mice and their wild-type littermates were exposed to genotoxic stress by whole-body administration of ∼10% radiotherapeutic dose of ionizing radiation (0.5 Gy 1x per week for 10 weeks). A third set of wild-type mice (n=6) were exposed to one shot local spine irradiation at 0, 6, and 10 Gy at 22 weeks old and sacrificed 10 weeks later. Histological staining for proteoglycan (Safranin O) and collagen (Masson's Trichrome), PG synthesis (. 35. S-sulfate incorporation) and GAG content (DMMB assay), disc ADAMTS4, aggrecan and its fragments terminating in NITEGE-. 373. (immunohistochemistry (IHC)) were analyzed. Cellular senescence markers (p16) and apoptosis (TUNEL assay) were also measured. Results. Histological staining revealed substantial reduction in matrix collagen, proteoglycan, and endplate cellularity in the discs of MEC-exposed and irradiated mice. IHC analysis showed decreased aggrecan and increased levels of ADAMTS4 and NITEGE-. 373. containing aggrecan proteolytic fragments. Disc PG synthesis was reduced 2–3 folds in MEC-treated mice and irradiated mice. Locally irradiated mice showed similar effects on disc matrix. Expression of p16 as well as apoptosis significantly increased in MEC-treated and irradiated mice. The overall effect of the treatments on disc matrix and endplate cartilage was more severe in Ercc1−/Δ mice than wild-type mice. Discussion/Conclusion. MEC and IR treatment resulted in loss of disc matrix proteoglycan and collagen in adult wild-type and Ercc1−/Δ mice. The finding that loss of matrix proteoglycan was greater in the DNA repair deficient mice strongly supports the conclusion that DNA damage can drive disc degeneration and DNA repair ability is extremely important to help prevent these effects. Results of this work suggest that patients treated with genotoxic drugs (i.e. long-term cancer survivors) may be at increased risk of IDD