Chronic low back pain is strongly linked to degeneration of the intervertebral disc (IVD), which currently lacks any targeted treatments. This study explores NPgel, a biomaterial combined with notochordal cells (NC), developmental precursor cells, as a potential solution. NCs, known for anti-catabolic effects on IVD cells, present a promising avenue for regenerating damaged IVD tissue. Bovine IVDs underwent enzymatic degeneration before NPgel (+/- NC) injection. Degenerated bovine IVDs were cultured under biomechanical loading for 21 days. Histology and immunohistochemistry assessed NC survival, phenotype, and matrix production. Within an Background
Methods
Backgrounds and aim. Low back pain resulting from Intervertebral disc (IVD) degeneration is a serious worldwide problem, with poor treatment options available. Notochordal (NC) cells, are a promising therapeutic
Purpose of study and background. We have previously reported the development of injectable hydrogels for potential disc regeneration (NPgel) or bone formation which could be utilized in spinal fusion (Bgel). As there are multiple sources of mesenchymal stem cells (MSCs), this study investigated the incorporation of patient matched hMSCs derived from adipose tissue (AD) and bone marrow (BM) to determine their ability to differentiate within both hydrogel systems under different culture conditions. Methods and Results. Human fat pad and bone marrow derived MSCs were isolated from femoral heads of patients undergoing hip replacement surgery for osteoarthritis with informed consent. MSCs were encapsulated into either NPgel or Bgel and cultured for up to 6 weeks in 5% (NPgel) or 21% (Bgel) O. 2. Histology and immunohistochemistry was utilized to determine phenotype. Both fat and bone marrow derived MSCs, were able to differentiate into both cell lineages. NPgel culture conditions increased expression of matrix components such as collagen II and aggrecan and NP phenotypic markers FOXF1 and PAX1, whereas Bgel induced expression of collagen I and osteopontin, indicative of osteogenic differentiation. Conclusion. NPgel and Bgel were able to differentiate patient derived MSCs from different sources into both NP and osteogenic lineages, which may give rise to novel treatment strategies for IVD degeneration and spinal fusion, enabling choice for
Background. Degeneration of the intervertebral disc (IVD) is a leading cause of lower back pain, and a significant clinical problem. Inflammation mediated by IL-1β and TNF-α drives IVD degeneration through promoting a phenotypic switch in the resident nucleus pulposus (NP) cells towards a more catabolic state, resulting in extracellular matrix degradation. Bone marrow mesenchymal stem cells (MSCs) produce bioactive factors that modulate local tissue microenvironments and their anti-inflammatory potential has been shown in numerous disease models. Thus MSCs offer a potential therapy for IVD degeneration. In a clinical setting, adipose-derived stem cells (ASCs) might represent an alternative and perhaps more appealing