Advertisement for orthosearch.org.uk
Results 1 - 20 of 90
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 324 - 324
1 Jul 2014
Marmotti A Mattia S Bonasia DE Bruzzone M Terrando S Tarella C Ponzo E Blonna D Castoldi F Peretti GM Rossi R
Full Access

Summary Statement. Hypoxia enhances chondrocyte phenotype of cells migrating from cartilage fragments, thus supporting the use of chondral fragment as a potential cell source for one-stage cartilage repair. Introduction. Minced cartilage fragments are a viable cell source for one stage cartilage repair, as shown in both in preclinical and clinical studies. However, the joint microenvironment, in which the repair process takes place, is hypoxic and no evidences are present in literature regarding the behaviour of cartilage fragments in a hypoxic environment. Aim of the study is to verify if hypoxia could influence chondrocyte outgrowth from cartilage fragments into a Hyaluronic-Acid/fibrin scaffold and evaluate its effects on migrating chondrocyte behaviour, compared to normoxic condition. This could be significant in the perspective of a wide clinical application of human chondral fragments for single stage repair. Materials and methods. Constructs were prepared with minced cartilage fragments harvested from the trochlear region of 20 human young donors during ACL reconstruction, loaded onto a non-woven esterified Hyaluronic-Acid-derivative felt (Hyaff-11) and retained with a coating of fibrin glue (Tisseel). Constructs were cultured either in normoxic or in hypoxic (10% O. 2. ) condition. The growth medium contained DMEM-high-glucose (4500mg/l)with 10% fetal-bovine-serum. After 1 month, construct sections were stained with haematoxylin/eosin and Safranin-O and examined for cell counting. Expression of chondrocyte markers (SOX9, collagen-II, collagen-I), hypoxic markers(HIFs) and proliferative markers (beta-catenin, PCNA) was assessed using immunofluorescence. Results. Migrating cells predominantly showed a spindle-like shape when close to the fragments and a more roundish shape when embedded into the scaffold. A slight decrease in chondrocyte migration and proliferation was observed in hypoxic cultures, albeit not statistically significant. Conversely, an increase in the expression of SOX9, beta-catenin, HIFs, collagen-II (p<0.05) in migrating chondrocytes from hypoxic cultures was shown by immunofluorescence. Discussion/Conclusion. Hypoxia seems to improve the chondrocyte phenotype/behaviour of cell outgrowing from cartilage fragments onto a HA/fibrin scaffold. Moreover, hypoxic condition did not hamper the ability and the mechanisms by which chondrocytes migrate from cartilage fragments and proliferate into the surrounding environment. This is clinically relevant in order to validate one-step repair techniques by means of human cartilage fragments loaded into composite scaffolds


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 20 - 20
7 Aug 2024
Snuggs J Ciccione C Vernengo A Tryfonidou M Grad S Vadala G Maitre CL
Full Access

Background

Chronic low back pain is strongly linked to degeneration of the intervertebral disc (IVD), which currently lacks any targeted treatments. This study explores NPgel, a biomaterial combined with notochordal cells (NC), developmental precursor cells, as a potential solution. NCs, known for anti-catabolic effects on IVD cells, present a promising avenue for regenerating damaged IVD tissue.

Methods

Bovine IVDs underwent enzymatic degeneration before NPgel (+/- NC) injection. Degenerated bovine IVDs were cultured under biomechanical loading for 21 days. Histology and immunohistochemistry assessed NC survival, phenotype, and matrix production. Within an in vivo sheep pilot study, NPgel (+/- NC) was injected into degenerated IVDs, blood was taken, and immune cell activation was monitored via flow cytometry over three months post-injection.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 47 - 47
1 Jan 2004
Hannouche D Petite H Meunier A Sedel L Vacanti J
Full Access

Purpose: Tissue engineering offers new therapeutic perspectives with the possibility of producing cartilage tissue for a large number of patients. These structures are composed of an absorbable synthetic support and competent cells. Two types of cells can be proposed: articular chondrocytes harvested from the peripheral part of the joint, or mesenchymatous stem cells (MSC) present in the bone marrow and possessing chondrogenic potential. The purpose of this study was to determine the optimal cell source and the best supporting material for in vitro production of cartilage. Material and methods: Isolated rabbit MSC were harvested and amplified with cell culture for 21 days. After this period, 20–40 million cells/ml were combined with polyglycolic acid sponges (3 types of sponges 1x1x0.2 cm2) and cultured in TGFß-enriched medium under specific dynamic conditions allowing gas exchange. The tissue obtained was compared with structures of identical size obtained with differentiated chondrocytes harvested from the same animals. The study included a histological analysis and immunohistochemistry for type I, II, and X collagen and biochemistry for DNA content, glycosaminoglycanes (GAG) and type II collagen. Results: After 3 weeks in culture, the composites obtained with MSC preserved their size and had the white pearly aspect of hyalin cartilage. The histological analysis and immunohistochemistry tests for type II collagen confirmed the presence of a cartilaginous matrix throughout the thickness of the fragments. The GAG and type II collagen contents were significantly higher with MSC compared with chondrocytes, irrespective of the supporting material. Discussion: This study demonstrated that cartilaginous tissue fragments can be obtained with MSC cultured on PGA supporting material under very specific conditions. Use of these cells offers the advantage of easy harvesting followed by in vitro amplification, and thus less harvesting morbidity. Complementary studies are needed to evaluate the behaviour of these living materials after implantation in the articulation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 63 - 63
1 Jul 2014
Marmotti A Mattia S Peretti G Bonasia D Bruzzone M Dettoni F Rossi R Mazzucchelli L Gioia D Castoldi F
Full Access

Summary Statement

Mesenchymal stem cells from minced umbilical cord fragments may represent a valuable cell population for cartilage and bone tissue engineering

Introduction

A promising approach for cartilage and bone repair is the use of umbilical cord mesenchymal stem cell (UC-MSC)-based tissue engineering. Through a simple and efficient protocol based on mincing the umbilical cord, a consistent number of multipotent UC-MSCs can be obtained. The aim of this in-vitro study is to investigate the pluripotency of UC-MSCs and, in particular, the chondrogenic and osteogenic potential of UC-MSCs grown in tridimensional scaffold, in order to identify a potential clinical relevance for patients who might benefit from MSCs-therapy.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 719 - 728
1 Oct 2020
Wang J Zhou L Zhang Y Huang L Shi Q

Aims. The purpose of our study was to determine whether mesenchymal stem cells (MSCs) are an effective and safe therapeutic agent for the treatment of knee osteoarthritis (OA), owing to their cartilage regeneration potential. Methods. We searched PubMed, Embase, and the Cochrane Library, with keywords including “knee osteoarthritis” and “mesenchymal stem cells”, up to June 2019. We selected randomized controlled trials (RCTs) that explored the use of MSCs to treat knee OA. The visual analogue scale (VAS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC), adverse events, and the whole-organ MRI score (WORMS) were used as the primary evaluation tools in the studies. Our meta-analysis included a subgroup analysis of cell dose and cell source. Results. Seven trials evaluating 256 patients were included in the meta-analysis. MSC treatment significantly improved the VAS (mean difference (MD), –13.24; 95% confidence intervals (CIs) –23.28 to –3.20, p = 0.010) and WOMAC (MD, –7.22; 95% CI –12.97 to –1.47, p = 0.010). The low-dose group with less than 30 million cells showed lower p-values for both the VAS and WOMAC. Adipose and umbilical cord–derived stem cells also had lower p-values for pain scores than those derived from bone marrow. Conclusion. Overall, MSC-based cell therapy is a relatively safe treatment that holds great potential for OA, evidenced by a positive effect on pain and knee function. Using low-dose (25 million) and adipose-derived stem cells is likely to achieve better results, but further research is needed. Cite this article: Bone Joint Res 2020;9(10):719–728


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 52 - 52
11 Apr 2023
Basatvat S Braun T Snuggs J Williams R Templin M Tryfonidou M Le Maitre C
Full Access

Low back pain resulting from Interertebral disc (IVD) degeneration is a serious worldwide problem, with poor treatment options available. Notochordal (NC) cells, are a promising therapeutic cell source with anti-catabolic and regenerative effect. However, their behaviour in the harsh degenerate environment is unknown. Porcine NC cells (pNCs), and Human NP cells from degenerate IVDs were cultured in alginate beads to maintain phenotype. Cells were cultured alone or in combination, or co-stimulated with notochordal cell condition media (NCCM), in media to mimic the healthy and degenerate disc environment, together with controls for up to 1 week. Following culture viability, qPCR and proteomic analysis using Digiwest was performed. A small increase in pNC cell death was observed in degenerated media compared to standard and healthy media, with a further decrease seen when cultured with IL-1β. Whilst no significant differences were seen in phenotypic marker expression in pNCs cultured in any media at gene level (ACAN, KRT8, KRT18, FOXA2, COL1A1 and Brachyury). Preliminary Digiwest analysis showed increased protein production for Cytokeratin 18, src and phosphorylated PKC but a decrease in fibronectin in degenerated media compared to standard media. Human NP cells cultured with NCCM, showed a decrease in IL-8 production compared to human NP cells alone when cultured in healthy media. However, gene expression analysis (ACAN, VEGF, MMP3 and IL-1β) demonstrated no significant difference between NP only and NP+NCCM groups. Studying the behaviour of the NCs in in vitro conditions that mimic the in vivo healthy or degenerate niche will help us to better understand their potential for therapeutic approaches. The potential use of NC cell sources for regenerative therapies can then be translated to investigate the potential use of iPSCs differentiated into NC cells as a regenerative cell source


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 18 - 18
1 Oct 2022
Basatvat S Braun T Snuggs J Williams R Templin M Tryfonidou M Le Maitre C
Full Access

Backgrounds and aim. Low back pain resulting from Intervertebral disc (IVD) degeneration is a serious worldwide problem, with poor treatment options available. Notochordal (NC) cells, are a promising therapeutic cell source with anti-catabolic and regenerative effect, however, their behaviour in the harsh degenerate environment is unknown. Thus, we aimed to investigate and compare their physiological behaviour in in vitro niche that mimics the healthy and degenerated intervertebral disc environment. Methodology. Porcine NC cells were encapsulated in 3D alginate beads to maintain their phenotype then cultured in media to mimic the healthy and degenerate disc environment, together with control NC media for 1 week. Following which viability using PI and Calcein AM, RNA extraction and RT-PCR for NC cell markers, anabolic and catabolic genes analysed. Proteomic analysis was also performed using Digiwest technology. Results. A small increase in cell death was observed in degenerated media compared to standard and healthy media, with a further decrease seen when cultured with IL-1β. Whilst no significant differences were seen in phenotypic marker expression in NCs cultured in any media at gene level (ACAN, KRT8, KRT18, FOXA2, COL1A1 and Brachyury). Preliminary Digiwest analysis showed increased protein production for Cytokeratin 18, src and phosphorylated PKC but a decrease in fibronectin in degenerated media compared to standard media. Discussion. Studying the behaviour of the NCs in in vitro conditions that mimic the in vivo healthy or degenerate niche will help us to better understand their potential for therapeutic approaches. The initial work has been then translated to investigate the potential use of iPSCs differentiated into notochordal like cells as potential regenerative cell sources. Conflicts of interest: No conflicts of interest. Sources of funding: This project has received funding from the European Union Horizon 2020 research and innovation programme under grant agreement No 825925


Bone & Joint Research
Vol. 8, Issue 9 | Pages 414 - 424
2 Sep 2019
Schmalzl J Plumhoff P Gilbert F Gohlke F Konrads C Brunner U Jakob F Ebert R Steinert AF

Objectives. The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods. In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results. Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion. These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery. Cite this article: J. Schmalzl, P. Plumhoff, F. Gilbert, F. Gohlke, C. Konrads, U. Brunner, F. Jakob, R. Ebert, A. F. Steinert. Tendon-derived stem cells from the long head of the biceps tendon: Inflammation does not affect the regenerative potential. Bone Joint Res 2019;8:414–424. DOI: 10.1302/2046-3758.89.BJR-2018-0214.R2


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 41 - 41
1 Nov 2021
Hammersen T Zietzschmann S Richter W
Full Access

Introduction and Objective. Current cartilage repair strategies lack adequate tissue integration capacity and often present mechanical failure at the graft-to-host tissue junction. The design of multilayered osteochondral tissue engineering (TE) constructs is an attractive approach to overcome these problems. However, calcium ion-release from resorbable bone-replacement materials was suggested to compromise chondrogenic differentiation of adjacent cartilage tissue and it is unclear whether articular chondrocytes (AC) or mesenchymal stroma cells (MSC) are more sensitive to such conditions. Aim of the study was to compare how elevated calcium levels affect cartilage matrix production during re-differentiation of AC versus chondrogenic differentiation of MSC. The results of this study will help to identify the ideal cell source for growth of neocartilage adjacent to a calcified bone replacement material for design of multilayered osteochondral TE approaches. Materials and Methods. Expanded human AC and MSC (6–12 donors per group) were seeded in collagen type I/III scaffolds and cultured under standard chondrogenic conditions at control (1.8mM) or elevated (8.0mM) CaCl2 for 35 days. Proteoglycan and collagen production were assessed via radiolabel-incorporation, ELISA, qPCR and Western blotting. Differences between groups or cell types were calculated using the non-parametric Wilcoxon or Mann-Whitney U test, respectively, with p < 0.05 considered significant. Results. Elevated calcium significantly reduced GAG synthesis (63% of control, p=0.04) and chondrogenic marker expression of AC, lowering the GAG/DNA content (47% of control, p=0.004) and collagen type II deposition (24% of control, p=0.05) of neocartilage compared to control conditions. Opposite, at elevated calcium levels MSC-derived chondrocytes significantly increased GAG synthesis (130% of control, p=0.02) and collagen type II content (160% of control, p=0.03) of cartilage compared to control tissue. Chondrogenic and hypertrophic marker expression was insensitive to calcium levels in MSC-derived chondrocytes. As a result, maturation under elevated calcium allowed for a significantly higher GAG/DNA content in MSC-derived samples compared to AC constructs, although under control conditions both groups developed similarly. Conclusions. AC and MSC showed an opposite reaction to elevation of calcium levels regarding cartilage matrix production and we propose MSC as a preferred cell source to grow chondrocytes in vicinity to calcified bone replacement materials. Since MSC remained prone to hypertrophy under elevated calcium, trizonal cartilage TE constructs, where an AC-layer is separated from the bone replacement phase by an intermediate layer of MSC appear as an ideal design for multilayered osteochondral TE with respect to calcium sensitivity of cells and protection of the upper cartilage layer from hypertrophy


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 47 - 47
2 Jan 2024
Cerveró-Varona A Canciello A Prencipe G Peserico A Haidar-Montes A Santos H Russo V Barboni B
Full Access

The application of immune regenerative strategies to deal with unsolved pathologies, such as tendinopathies, is getting attention in the field of tissue engineering exploiting the innate immunomodulatory potential of stem cells [1]. In this context, Amniotic Epithelial Cells (AECs) represent an innovative immune regenerative strategy due to their teno-inductive and immunomodulatory properties [2], and because of their high paracrine activity, become a potential stem cell source for a cell-free treatment to overcome the limitations of traditional cell-based therapies. Nevertheless, these immunomodulatory mechanisms on AECs are still not fully known to date. In these studies, we explored standardized protocols [3] to better comprehend the different phenotypic behavior between epithelial AECs (eAECs) and mesenchymal AECs (mAECs), and to further produce an enhanced immunomodulatory AECs-derived secretome by exposing cells to different stimuli. Hence, in order to fulfill these aims, eAECs and mAECs at third passage were silenced for CIITA and Nrf2, respectively, to understand the role of these molecules in an inflammatory response. Furthermore, AECs at first passage were seeded under normal or GO-coated coverslips to study the effect of GO on AECs, and further exposed to LPS and/or IL17 priming to increase the anti-inflammatory paracrine activity. The obtained results demonstrated how CIITA and Nrf2 control the immune response of eAECs and mAECs, respectively, under standard or immune-activated conditions (LPS priming). Additionally, GO exposition led to a faster activation of the Epithelial-Mesenchymal transition (EMT) through the TGFβ/SMAD signaling pathway with a change in the anti-inflammatory properties. Finally, the combinatory inflammatory stimuli of LPS+IL17 enhanced the paracrine activity and immunomodulatory properties of AECs. Therefore, AECs-derived secretome has emerged as a potential treatment option for inflammatory disorders such as tendinopathies. Acknowledgement: This research is part of the P4FIT project ESR1, funded under the H2020-ITN-EJD-Marie-Skłodowska-Curie grant agreement 955685


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 105 - 105
2 Jan 2024
Im G
Full Access

Extensive bone defects, caused by severe trauma or resection of large bone tumors, are difficult to treat. Regenerative medicine, including stem cell transplantation, may provide a novel solution for these intractable problems and improve the quality of life in affected patients. Adipose-derived stromal/stem cells (ASCs) have been extensively studied as cell sources for regenerative medicine due to their excellent proliferative capacity and the ability to obtain a large number of cells with minimal donor morbidity. However, the osteogenic potential of ASCs is lower than that of bone marrow-derived stromal/stem cells. To address this disadvantage, our group has employed various methods to enhance osteogenic differentiation of ASCs, including factors such as bone morphogenetic protein or Vitamin D, coculture with bone marrow stem cells, VEGF transfection, and gene transfer of Runx-2 and osterix. Recently, we mined a marker that can predict the osteogenic potential of ASC clones and also investigated the usefulness of the molecule as the enhancer of osteogenic differentiation of ASCs as well as its mechanism of action. Through RNA-seq gene analysis, we discovered that GSTT1 was the most distinguished gene marker between highly osteogenic and poorly osteogenic ASC clones. Knockdown of GSTT1 in high osteogenic ASCs by siGSTT1 treatment reduced mineralized matrix formation while GSTT1 overexpression by GSTT1 transfection or GSTT1 recombinant protein treatment enhanced osteogenic differentiation of low osteogenic ASCs. Metabolomic analysis confirmed significant changes of metabolites related to bone differentiation in ASCs transfected with GSTT1. A high total antioxidant capacity, low levels of cellular reactive oxygen species and increased GSH/GSSG ratios were also detected in GSTT1- transfected ASCs. GSTT1 can be a useful marker to screen the highly osteogenic ASC clones and also a therapeutic factor to enhance the osteogenic differentiation of poorly osteogenic ASC clones


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 45 - 45
11 Apr 2023
Hanetseder D Hruschka V Redl H Marolt Presen D
Full Access

Regeneration of bone defects in elderly patients is limited due to the decreased function of bone forming cells and compromised tissue physiology. Previous studies suggested that the regenerative activity of stem cells from aged tissues can be enhanced by exposure to young systemic and tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells (hiPSCs) can enhance the bone regeneration potential of aged human bone marrow stromal cells (hBMSCs). ECM was engineered from hiPSC-derived mesenchymal-like progenitors (hiPSC-MPs), as well as young (<30 years) and aged (>70 years) hBMSCs. ECM structure and composition were characterized before and after decellularization using immunofluorescence and biochemical assays. Three hBMSCs of different ages were cultured on engineered ECMs. Growth and differentiation responses were compared to tissue culture plastic, as well as to collagen and fibronectin coated plates. Decellularized ECMs contained collagens type I and IV, fibronectin, laminin and < 5% residual DNA, suggesting efficient cell elimination. Cultivation of young and aged hBMSCs on the hiPSC-ECM in osteogenic medium significantly increased hBMSC growth and markers of osteogenesis, including collagen deposition, alkaline phosphatase activity, bone sialoprotein expression and matrix mineralization compared to plastic controls and single protein substrates. In aged BMSCs, matrix mineralization was only detected in ECM cultures in osteogenic medium. Comparison of ECMs engineered from hiPSC-MPs and hBMSCs of different ages suggested similar structure, composition and potential to enhance osteogenic responses in aged BMSCs. Engineered ECM induced a higher osteogenic response compared to specific matrix components. Our studies suggest that aged BMSCs osteogenic activity can be enhanced by culture on engineered ECM. hiPSCs represent a scalable cell source, and tissue engineering strategies employing engineered ECM materials could potentially enhance bone regeneration in elderly patients


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 15 - 15
2 Jan 2024
Monteiro R Bakht S Gomez-Florit M Reis R Gomes M Domingues R
Full Access

Relevant in vitro models emulating tendinopathies are highly needed to study these diseases and develop better treatments. We have recently proposed a new strategy that allows the automated 3D writing of microphysiological systems (MPS) embedded into its own biomimetic fibrillar support platform based on the self-assembling of cellulose nanocrystals (CNCs). Here, we explored this CNC platform for writing humanized in vitro tendon models using tendon decellularized extracellular matrix (dECM)-based bioinks to closely recapitulate the biophysical and biochemical cues of tendon cell niche and self-induce the tenogenic differentiation of stem cells. The proposed concept was further explored to study the crosstalk between the tendon core and vascular compartment. Porcine flexor tendons were decellularized to produce the dECM bioink hydrogel. hASCs were used as cell source and the bioink was directly printed within the CNC fluid gel. Tendon constructs were co-printed with compartmentalized microvascular structures to evaluate the cellular crosstalk with endothelial cells. The tendon-on-chip models showed high cell viability and proliferation during culture up to 21 days, and the synergy between dECM cues and printed patterns induced anisotropic cell organization similar to tendon tissues. Gene and protein analysis showed upregulation of the most important tendon related markers on tendon constructs, demonstrating that the biophysical and biochemical cues of dECM induced hASCs commitment toward tenogenic phenotype. In co-culture system, chemotaxis induced endothelial cells migration toward the tendon compartment, but without significant infiltration. Gene and protein expression results suggest that the cellular crosstalk established in this MPS with endothelial cells boosted hASCs tenogenesis, emulating tendon development stages. Overall, the proposed system might be promising for the automated fabrication of organotypic tendon-on-chip models that will be a valuable new tool to study tendon physiology, pathology, or the effect of drugs for the treatment of tendinopathy. Acknowledgments: EU H2020 for ERC-2017-CoG-772817; ERC-PoC-BioCHIPs-101069302; FCT/MCTES for 2022.05526.PTDC, 2020.03410.CEECIND, and PD/BD/129403/2017


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 41 - 41
11 Apr 2023
Deegan A Lawlor L Yang X Yang Y
Full Access

Our previous research has demonstrated that minor adjustments to in vitro cellular aggregation parameters, i.e. alterations to aggregate size, can influence temporal and spatial mineral depositions within maturing bone cell nodules. What remains unclear, however, is how aggregate size might affect mineralisation within said nodules over long-term in vivo culture. In this study, we used an osteoblast cell line, MLO-A5, and a primary cell culture, mesenchymal stem cells (MSC), to compare small (approximately 80 µm) with large (approximately 220 µm) cellular aggregates for potential bone nodule development after 8 weeks of culturing in a mouse model (n = 4 each group). In total, 30 chambers were implanted into the intra-peritoneal cavity of 20 male, immunocompromised mice (MF1-Nu/Nu, 4 – 5 weeks old). Nine small or three large aggregates were used per chamber. Neoveil mesh was seeded directly with 2 × 10. 3. cells for monolayer control. At 8 weeks, the animals were euthanised and chambers fixed with formalin. Aggregate integrity and extracellular material growth were assessed via light microscopy and the potential mineralisation was assessed via micro-CT. Many large aggregates appeared to disintegrate, whilst the small aggregates maintained their form and produced additional extracellular material with increased sizes. Both MLO-A5 cells and MSC cells saw similar results. Interestingly, however, the MSCs were also seen to produce a significantly higher volume of dense material compared to the MLO-A5 cells from micro-CT analysis. Overall, a critical cell aggregate size appeared to exist balancing optimal tissue growth with oxygen diffusion, and cell source may influence differentiation pathway despite similar experimental parameters. The MSCs, for example, were likely producing bone via the endochondral ossification pathway, whilst the matured bone cells, MLO-A5 cells, were likely producing bone via the intramembranous ossification pathway


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 37 - 37
1 Apr 2018
Gaspar D Zeugolis D
Full Access

Cell-based tissue engineering strategies for tendon repair have limited clinical applicability due to delayed extracellular matrix (ECM) deposition and subsequent prolonged culture periods, which lead to tenogenic phenotypic drift. Deposition of ECM in vitro can be enhanced by macromolecular crowding (MMC), a biophysical phenomenon that governs the intra- and extra-cellular milieu of multicellular organisms, which has been described to accelerate ECM deposition in human tenocytes. A variety of cell sources have been studied for tendon repair including tenocytes, dermal fibroblasts (DFs) and mesenchymal stem cells (MSCs) and various biophysical, biochemical and biological tools have been used to mimic tendon microenvironment. Therefore, we propose to assess the combined effect of MMC and mechanical loading on different cell sources to determine their suitability for the in vitro fabrication of tendon-like tissue. The uniaxial strain induced differential cell orientation based on the differentiation state of the cells: tenocytes and DFs, both permanently differentiated cells exhibited alignment perpendicular to the direction of the load, similarly to what is seen in native tendon environment. Immunocytochemistry showed that, when MMC is used, the DFs and MSCs showed increased deposition of collagen type I, one of the main components in tendon ECM. It is also seen that the ECM deposited follows the alignment of the cell cytoskeleton. However, for tenocytes, deposition of collagen type I is only seen when MMC is used in combination with mechanical loading, indicating that mechanical loading led to increased synthesis of collagen I, suggesting maintenance of the tenogenic phenotype. Other collagen types relevant to native tendon composition were also analysed, including types III, V and VI, and their deposition was also shown to be modulated by the use of MMC and mechanical loading. This appears to recreate the events of tendon tissue formation during development, where these collagen types are involved in regulation of collagen I fibrillogenesis and fibril diameter. Preliminary data also indicates that, under mechanical loading and MMC, expression of tenogenic genes is upregulated whilst chondrogenic and osteogenic markers are downregulated. This indicates the suitability of the combination of MMC and mechanical stimulation for modulating tenogenic phenotype of various cell sources and fabricating tendon-like tissue


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 57 - 57
1 Nov 2021
Sakai D
Full Access

Low back pain is thought to relate to intervertebral disc (IVD) degeneration. Although the mechanisms have not been clearly identified, exhaustion of nucleus pulposus cells and their producing matrix is regarded as one cause. The matrix of the IVD is continuously replenished and remodeled by tissue-specialized cells and are crucial in supporting the IVD function. However, due to aging, trauma, and genetic and lifestyle factors, the cells can lose their potency and viability, thereby limiting their collective matrix production capacity. We have discovered the link between loss of angiopoietin-1 receptor (Tie2)-positive human NP progenitor cells (NPPC) and IVD degeneration. Tie2+ cells were characterized as undifferentiated cells with multipotency and possessing high self-renewal abilities. Thus we and others have proposed Tie2+ NPPC as a potent cell source for regenerative cell therapies against IVD degeneration. However, their utilization is hindered by low Tie2-expressing cell yields from NP tissue, in particular from commonly available older and degenerated tissue sources. Moreover, NPPC show a rapid Tie2 decrease due to cell differentiation as part of standard culture processes. As such, a need exists to optimize or develop new culture methods that enable the maintenance of Tie2-expressing NPPC. Trials to overcome these difficulties will be shared


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 37 - 37
1 Nov 2021
Peretti GM
Full Access

In the last decades, significant effort has been attempted to salvage the meniscus following injury. Basic science approaches to meniscus repair include procedures for both meniscus regeneration and meniscus healing. Regeneration of meniscal tissue focuses on filling a defect with reparative tissue, which resembles the native structure and function of the meniscus. Procedures for meniscus healing, on the other hand, aim to accomplish adhesion between the margins of a meniscal lesion, with no attempt to regenerate or replace meniscal tissue. Regeneration studies of tissue to fill a defect in the meniscus have shown interesting results, but complete restoration of the native meniscus has not yet been accomplished. Healing of a meniscal lesion has been investigated in different models although none has demonstrated reproducible healing. Therefore, different paths of investigation must be undertaken, and one of these may be the cell-therapy / tissue engineering approach. In a study from our group, we showed the capacity of chondrocyte-seeded cartilaginous scaffold to repair a bucket-handle lesion of the knee meniscus orthotopically in a large animal study. Following studies were done in order to test the potential of other scaffolds and different cell sources for the repair of the meniscal tissue. We have also evaluated the role of hypoxia in meniscal development in vitro as basis for future research in this field, as hypoxia could be be considered as a promoter for meniscal cells maturation, and opens considerably opportunities in the field of meniscus tissue engineering


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 55 - 55
1 Nov 2018
Hoyland J
Full Access

Current medical treatments for IVD degeneration rely on conservative therapies or surgery. Surgical treatments (e.g. spinal fusion,) have shown satisfactory results in alleviating pain, but long-term clinical outcomes remain poor. Thus, there is an urgent need for alternative cell based regenerative therapies focussed on correcting the underlying pathogenesis of IVD degeneration. However, for these to be successful an appropriate cell source for implantation, together with a suitable growth factor to direct cell differentiation and formation of a functional matrix must be identified. Additionally, extensive in vitro studies are needed to establish and support further pre-clinical and potential commercial development. We have demonstrated that stimulation of both BM-MSCs and AD-MSCs with GDF6 results in improved differentiation to a nucleus pulposus (NP)-like phenotype and synthesis of proteoglycan rich matrix with micromechanical properties akin to the healthy IVD. Significantly, these studies have highlighted that AD-MSCs are the more appropriate cell source. Furthermore, our studies have shown hat GDF6 has anabolic effects on degenerate human NP cells, stimulating adoption of a more normal NP phenotype and increasing appropriate atrix synthesis. This suggests that delivery of GDF6 as part of an MSC-based therapy may be beneficial both in directing lineage-specific MSC differentiation, but also in restoring a more anabolic phenotype in native NP cells, thereby having a dual regenerative effect


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 56 - 56
1 Nov 2018
Gaspar D Zeugolis DI
Full Access

Current cell-based tissue engineering strategies have limited clinical applicability due to the need for large cell numbers and prolonged culture periods that lead to phenotypic drift. In vitro microenvironmental modulators have been proposed to mimic the native tendon. Standard in vitro culture conditions result in delayed extracellular matrix (ECM) deposition, impairing the development of scaffold-free approaches. ECM deposition can be enhanced by macromolecular crowding (MMC), a biophysical phenomenon that governs the milieu of multicellular organisms. We assessed a multifactorial biophysical approach, using MMC and mechanical loading, on different cell sources to determine their suitability for in vitro fabrication of tendon-like tissue. Human dermal fibroblasts (DFs), tenocytes (TCs) and bone marrow mesenchymal stem cells (BMSCs) were cultured with MMC under static and uniaxial strain culture conditions. TCs and DFs exhibited alignment perpendicular to the load, whilst BMSCs did not show preferential alignment. When MMC was used, DFs and BMSCs showed increased deposition of collagen I, the main component in tendon ECM. DFs presented ECM composition similar to TCs with collagen types III, V and VI present. Gene expression analysis revealed upregulation of tenogenic markers by TCs and DFs, such as scleraxis and thrombospondin-4, under both loading and MMC. The combined use of MMC and mechanical stimulation is suitable for TCs phenotype maintenance and can modulate the phenotype of DFs and BMSCs differentially. This study provides insight into response of different cell sources to biophysical cues and contributes to further development of cell therapies for tendon repair and regeneration


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 77 - 77
1 Nov 2018
Reis RL
Full Access

The selection of a proper material to be used as a scaffold or as a hydrogel to support, hold or encapsulate cells is both a critical and a difficult choice that will determine the success of failure of any tissue engineering and regenerative medicine (TERM) strategy. We believe that the use of natural origin polymers, including a wide range of marine origin materials, is the best option for many different approaches that allow for the regeneration of different tissues. In addition to the selection of appropriate material systems it is of outmost importance the development of processing methodologies that allow for the production of adequate scaffolds/matrices, in many cases incorporating bioactive/differentiation agents in their structures. An adequate cell source should be selected. In many cases efficient cell isolation, expansion and differentiation, and in many cases the selection of a specific sub-population, methodologies should be developed and optimized. We have been using different human cell sources namely: mesenchymal stem cells from bone marrow, mesenchymal stem cells from human adipose tissue, human cells from amniotic fluids and membranes and cells obtained from human umbilical cords. The development of dynamic ways to culture the cells and of distinct ways to stimulate their differentiation in 3D environments, as well as the use of nano-based systems to induce their differentiation and internalization into cells, is also a key part of some of the strategies that are being developed in our research group. The potential of each combination materials/cells, to be used to develop novel useful regeneration therapies will be discussed. The use of different cells and their interactions with different natural origin degradable scaffolds and smart hydrogels will be described. Several examples of TERM strategies to regenerate different types of musculoskeletal tissues will be presented. Relevance to orthopaedics will be highlighted