Introduction. Osteochondral defects (OCDs) of the talus are treated initially by arthroscopic bone marrow stimulation. For both large and secondary defects, current alternative treatment methods have disadvantages such as donor site morbidity or two-stage surgery. Demineralized bone matrix (DBM) was published for the treatment of OCDs of rabbit knees. Autologous platelet-rich plasma (PRP) may improve the treatment effect of DBM. We previously developed a goat model to investigate new treatment methods for OCDs of the talus. The aim of the current study was to test whether DBM leads to more bone regeneration than control OCDs, and whether PRP improves the effectiveness of DBM. Methods. A standardized 6-mm OCD was created in 32 ankles of 16 adult Dutch milk goats. According to a randomized schedule, 8 goats were treated with commercially available DBM (Bonus DBM, Biomet BV, Dordrecht, the Netherlands) hydrated with normal saline, and 8 were treated with the same DBM but hydrated with autologous PRP (DBM+PRP). The contralateral ankles (left or right) were left untreated and served as a control. The goats were sacrificed after 24 weeks and the tali were excised. The articular talar surfaces were assessed macroscopically using the international
Aim. The present study was designed to evaluate the implantation of alginate beads containing human mature allogenic chondrocytes for the treatment of symptomatic cartilage defects in the knee. Methods. A biodegradable, alginate-based biocompatible scaffold containing human mature allogenic chondrocytes was used for the treatment of chondral and osteochondral lesions in the knee. Twenty-one patients were clinically prospectively evaluated with use of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and a Visual Analogue Scale (VAS) for pain preoperatively and at 3, 6, 9, 12, 24 and 36 months of follow-up. Results. A statistically significant clinical improvement became apparent after 6 months and patients continued to improve during the 36 months of follow-up. Adverse reactions to the alginate/fibrin matrix seeded with the allogenic cartilage cells were not observed. Two of the procedures failed. One of the patients had loosening of the periosteal flap, which was attributed to a failure of the surgical procedure. The other failure case was the result of the poor quality and quantity of the repair tissue itself. Discussion. The results of this pilot study show that the alginate-based scaffold containing human mature allogenic chondrocytes is feasible for the treatment of symptomatic cartilage defects in the knee. The described technique provides clinical outcomes equal to those of other