There is a lack of
Critical size defects in ovine tibiae, stabilised with intramedullary interlocking nails, were used to assess whether the addition of carboxymethylcellulose to the standard osteogenic protein-1 (OP-1/BMP-7) implant would affect the implant’s efficacy for bone regeneration. The biomaterial
Summary. Carriers for local delivery of stem cells into degenerative intervertebral discs need to be tested under physiological loading since stem cell viability, density and differentiation, as well as
Objectives. Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe
Our previous rat study demonstrated an ex vivo-created “Biomimetic Hematoma” (BH) that mimics the intrinsic structural properties of normal fracture hematoma, consistently and efficiently enhanced the healing of large bone defects at extremely low doses of rhBMP-2 (0.33 μg). The aim of this study was to determine if an extremely low dose of rhBMP-2 delivered within BH can efficiently heal large bone defects in goats. Goat 2.5 cm tibial defects were stabilized with circular fixators, and divided into groups (n=2-3): 2.1 mg rhBMP-2 delivered on an absorbable collagen sponge (ACS); 52.5 μg rhBMP-2 delivered within BH; and an empty group. BH was created using autologous blood with a mixture of calcium and thrombin at specific concentrations. Healing was monitored with X-rays. After 8 weeks, femurs were assessed using microCT. Using 2.1 mg on ACS was sufficient to heal 2.5 cm bone defects. Empty defects resulted in a nonunion after 8 weeks. Radiographic evaluation showed earlier and more robust callus formation with 97.5 % (52.5 μg) less of rhBMP-2 delivered within the BH, and all tibias were fully bridged at 3 weeks. The bone mineral density was significantly higher in defects treated with BH than with ACS. Defects in the BH group had smaller amounts of intramedullary and cortical trabeculation compared to the ACS group, indicating advanced remodeling. The results confirm that the delivery of rhBMP-2 within the BH was much more efficient than on an ACS. Not only did the large bone defects heal consistently with a 40x lower dose of rhBMP-2, but the quality of the defect regeneration was also superior in the BH group. These findings should significantly influence how rhBMP-2 is delivered clinically to maximize the regenerative capacity of bone healing while minimizing the dose required, thereby reducing the risk of adverse effects.
Infections represent a devastating complication in orthopedic and traumatological surgery, with high rates of morbidity and mortality. An early intervention is essential, and it includes a radical surgical approach supported by targeted intravenous antimicrobial therapy. The availability of parenteral antibiotics at the site of infection is usually poor, so it is crucial to maximize local antibiotic concentration using local
Objectives. Thermal stability is a key property in determining the suitability of an antibiotic agent for local application in the treatment of orthopaedic infections. Despite the fact that long-term therapy is a stated goal of novel local delivery
Due to the presence of megakaryocytes, platelets and clotting factors, bone marrow aspirate (BMA) tends to coagulate. For the first time, starting from our previous studies on mesenchymal vertebral stem cells, it has been hypothesized that coagulated BMA represents a safe and effective autologous biological scaffold for bone regeneration in spinal surgery. The present research involved advanced preclinical in vitro models and the execution of a pilot clinical study. Evaluation of cell morphology, growth kinetics, immunophenotyping, clonogenicity, trilineage-differentiation, growth-factors and HOX and TALE gene expression were analyzed on clotted- and un-clotted human V-BMA. In parallel, a pilot clinical study on ten patients with degenerative spine diseases submitted to instrumented posterior arthrodesis, is ongoing to assess the ability of clotted-V-BMA to improve spinal fusion at 6- and 12-months follow-up. Results demonstrated that clotted-V-BMA have significantly higher growth-factor expression and mesenchymal stem cell (MSCs) viability, homogeneity, clonogenicity, and ability to differentiate towards the osteogenic phenotype than un-clotted-V-BMA. Clotted-V-BMA also highlighted significant reduced expression of PBX1 and of MEIS3 genes negatively involved in osteoblast maturation and differentiation. From December 2020, eight patients have already been enrolled with first promising results that will be finally evaluated in the next two months. The application of V-BMA-clot as
Miniscrew implants (MSIs) are widely used to provide absolute anchorage for the orthodontic treatment. However, the application of MSIs is limited by the relatively high failure rate (22.86%). In this study, we wished to investigate the effects of amorphous and crystalline biomimetic calcium phosphate coating on the surfaces of MSIs with or without the incorporated BSA for the osteointegration process with an aim to facilitate the early loading of MSIs. Amorphous and crystalline coatings were prepared on titanium mini-pin implants. Characterizations of coatings were examined by Scanning electron microscopy (SEM), Confocal laser-scanning dual-channel-fluorescence microscopy (CLSM) and Fourier-transform infrared spectroscopy (FTIR). The loading and release kinetics of bovine serum albumin (BSA) were evaluated by Enzyme linked immunosorbent assay (ELISA). Activity of alkaline phosphate (ALP) was measured by using the primary osteoblasts. In vivo, a model of metaphyseal tibial implantation in rats was used (n=6 rats per group). We had 6 different groups: no coating no BSA, no coating but with surface adsorption of BSA and incorporation of BSA in the biomimetic coating in the amorphous and crystalline coatings. Time points were 3 days, 1, 2 and 4 weeks. Histological and histomorphometric analysis were performed and the bone to implant contact (BIC) of each group was compared. In vitro, the incorporation of BSA changed the crystalline coating from sharp plates into curly plates, and the crystalline coating showed slow-release profile. The incorporation of BSA in crystalline coating significantly decreased the activity of ALP in vitro. In vivo study, the earliest significant increase of BIC appeared in crystalline coating group at one week. The crystalline coating can serve as a
Low back pain (LBP) is the main cause of disability worldwide and is primarily triggered by intervertebral disc degeneration (IDD). Although several treatment options exist, no therapeutic tool has demonstrated to halt the progressive course of IDD. Therefore, several clinical trials are being conducted to investigate different strategies to regenerate the intervertebral disc, with numerous studies not reaching completion nor being published. The aim of this study was to analyze the publication status of clinical trials on novel regenerative treatments for IDD by funding source and identify critical obstacles preventing their conclusion. Prospective clinical trials investigating regenerative treatments for IDD and registered on . ClinicalTrials.gov. were included. Primary outcomes were publication status and investigational treatment funding. Fisher's exact test was utilized to test the association for categorical variables between groups. 25 clinical trials were identified. Among these, only 6 (24%) have been published. The most common source of funding was university (52%), followed by industry (36%) and private companies (12%). Investigational treatments included autologous (56%) or allogeneic (12%) products alone or in combination with a
Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial
Although bone morphogenetic protein 2 (BMP-2) has been FDA-approved for spinal fusion for decades, its disadvantages of promoting osteoclast-based bone resorption and suboptimal
The degeneration of the intervertebral disc (IVD) is the primary cause for low back pain, which is treated with surgical interventions such as spinal fusion. A strategy to develop a regenerative and non-invasive treatment requires an injectable cell
Ciprofloxacin hydrochloride-loaded microspheres were prepared by a spray-drying method using pectin and chitosan. The effects of different polymers and drug ratios were investigated. The most appropriate
Mesoporous bioactive glasses (MBGs) have been widely studied as bone regeneration systems, due to their bioactivity and ability to store and release therapeutic agents with specific biological functions. The incorporation of these nanomaterials into a thermosensitive hydrogel (TSH), in which a solution undergoes a sol-gel transition under physiological conditions, represents a promising approach to design multifunctional devices able to deliver selected molecules to pathological sites. In fact, this system can perfectly fit the defect cavity shape prior to the complete gelation, and acts as a
The use of stem cells transplanted into the intervertebral disc (IVD) is a promising regenerative approach to treat intervertebral disc degeneration (IDD). The aim of this study was to assess the effect of a hydrogel composed of hyaluronic acid (HA) and platelet-rich plasma (PRP) loaded with human mesenchymal stem cells (hMSCs), on IVD extracellular matrix synthesis and nucleus pulposus (NP) marker expression in a whole IVD culture model. HA was blended with batroxobin (BTX), a gelling agent activated in presence of PRP to construct a hydrogel. Bovine IVDs (n=25) were nucleotomised and filled with 1×10. 6. or 2×10. 6. hMSCs suspended in ∼150 mL of the PRP/HA/BTX hydrogel. IVDs harvested at day 0 and nucleotomised IVDs with no hMSCs and/or hydrogel were used as controls. hMSCs alone or encapsulated in the hydrogel were also cultured in well plates to examine the effect of the IVD microenvironment on hMSCs. After 1 week, tissue structure, scaffold integration and gene expression of anabolic (collagen type I, collagen type II and aggrecan), catabolic (matrix metalloproteinase 3 – MMP-3 –, MMP-13 and a disintegrin and metalloproteinase with thrombospondin motifs 4) and NP cell (cytokeratin 19, carbonic anhydrase 12, cluster of differentiation 24) markers were assessed. Histological analysis showed a good integration of the scaffold within the NP area with cell repopulation. At the gene expression level, the hMSC-loaded hydrogels demonstrated to increase disc cell anabolic and catabolic marker expression and promoted hMSC differentiation towards a NP cell phenotype. This study demonstrated that the HA/PRP/BTX may represent a valid
Background. The different biodegradable local antibiotic delivery systems are widely used in recent years. The aim of this study was to evaluate the bactericidal activity antibiotic loaded PerOssal pellet in vitro and its effectiveness in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Material and methods. MALDI-TOF have been applied to microbiological diagnosis in patient with osteomyelitis. In most cases, Staphylococcus aureus was isolated. In vitro Ceftriaxone-Loaded PerOssal pellet were placed in middle agar plate containing a stock strain of Staphylococcus aureus. Plates were incubated at 37ºC for 24 hours. The zones of bacterial inhibition were recorded after 24, 48 and 72 hours of incubation. In vivo evaluation was performed by prospectively studying of 21 patients with a clinically and bacteriologically diagnosed Staphylococcus aureus induced osteomyelitis. Mean age was 38±4,2(26 to 53)). After radical surgical debridement and ultrasound cavitation, the bone cavity was full filled with Perosal pellets loaded with different antibiotics depending from the antibiotic sensitivity test. Endpoints were the absence of clinical manifestation of infection or disease recurrence, no need for further surgery. Results. In vitro showed after 24 hrs inhibition zone was 4,2 х 4,9 cm, after 72 hrs the inhibition zone was increased till 7,6 х 8,4 cm. During the subsequent time, there were no changes. Results of the clinical study evidenced no signs of infection in 18 patients (86% (CI 69,8;100)) (p<0,05) at the follow up, while 3 (14%(CI 0;30,2)) (p<0,05) subjects showed infection recurrence at 6 months from operation and 2 of them needed further surgical procedures. Conclusion. PerOssal as an antibiotic
Background. Despite the known multifactorial nature of scaphoid wrist fracture non-union, a possible genetic predisposition for the development of this complication remains unknown. This pilot study aimed to address this issue by performing Single Nucleotide Polymorphisms (SNPs) analysis of specific genes known to regulate fracture healing. Materials and Methods. We reviewed 120 patients in a retrospective case-control study from the Hand Surgery Department of Asepeyo Hospital. The case group comprised 60 patients with confirmed scaphoid wrist non-union, diagnosed by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). The control group comprised 60 patients with scaphoid fracture and complete bone consolidation. Sampling was carried out with a puncture of a finger pad using a sterile, single-use lancet. SNPs were determined by real-time polymerase chain reaction (PCR) using specific, unique probes with the analysis of the melting temperature of hybrids. The X2 test compared genotypes between groups. Multivariate logistic regression analysed the significance of many covariates and the incidence of scaphoid wrist non-union. Results. We found significant differences in subjects who had a smoking habit (p=0.001), high blood pressure (p<0.001), and surgical treatment (p=0.002) in patients with scaphoid non-union. There were more Caucasians (p=0.04) and males (p=0.001) in the case group. Falls were the main mechanism of fracture. The CC genotype in GDF5 (rs143383) was more frequent in patients with scaphoid non-union compared to the controls (p=0.02). CT was prevalent in the controls (p=0.02). T allele in GDF5 was more frequent in patients without non-union (p=0.001). Conclusions. Individuals who were
Introduction. Cancellous and cortical bone used as a delivery vehicle for antibiotics. Recent studies with cancellous bone as an antibiotic
Osteoarthritis (OA) is the most common joint disease, which is characterized by a progressive loss of proteoglycans and the destruction of extracellular matrix (ECM), leading to a loss of cartilage integrity and joint function. During OA development, chondrocytes alter ECM synthesis and change their gene expression profile including upregulation of hypertrophic markers known from the growth plate. Although physiological mechanical loading can support cartilage formation and maintenance, mechanical overload represents one major risk factor for OA development. To date, little is known on how an OA-like hypertrophic chondrocyte phenotype alters the response of cartilage tissue to mechanical loading. The aim of this study was to investigate whether a hypertrophic phenotype change of chondrocytes affects the response to physiological mechanical loading and to reveal differences compared to normal control cartilage. Cartilage replacement tissue was generated using human articular chondrocytes (normal control cartilage, n=3–5) or human mesenchymal stromal cells which develop a hypertrophic phenotype similar to the one observed in OA (OA cartilage model, n=3–6). Cells were seeded in a collagen type I/III