Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 130 - 130
11 Apr 2023
Biddle M Wilson V Miller N Phillips S
Full Access

Our aim was to ascertain if K-wire configuration had any influence on the infection and complication rate for base of 4th and 5th metacarpal fractures. We hypothesised that in individuals whose wires crossed the 4th and 5th carpometacarpal joint (CMCJ), the rate of complications and infection would be higher. Data was retrospectively analysed from a single centre. 106 consecutive patients with a base of 5th (with or without an associated 4th metacarpal fracture) were analysed between October 2016 and May 2021. Patients were split into two groups for comparison; those who did not have K-wires crossing the CMCJ's and those in whose fixation had wires crossing the joints. Confounding factors were accounted for and Statistical analysis was performed using SPSS version 20 software. Of 106 patients, 60 (56.6%) patients did have K-wires crossing the CMCJ. Wire size ranged from 1.2-2.0 with 65 individuals (65.7%) having size 1.6 wires inserted. The majority of patients, 66 (62.9%) underwent fixation with two wires (range 1-4). The majority of infected cases (88.9%) were in patients who had k-wires crossing the CMCJ, this trended towards clinical significance (p=0.09). Infection was associated with delay to theatre (p=0.002) and longer operative time (p=0.002). In patients with a base of 4th and 5th metacarpal fractures, we have demonstrated an increased risk of post-operative infection with a K-wire configuration that crosses the CMCJ. Biomechanical studies would be of use in determining the exact amount of movement across the CMCJ, with the different K-wire configuration in common use, and this will be part of a follow-up study


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 102 - 102
1 Jan 2017
Gindraux F Lepage D Loisel F Nallet A Tropet Y Obert L
Full Access

Used routinely in maxillofacial reconstructive surgery, the chondrocostal graft is also applied to hand surgery in traumatic or pathologic indications. The purpose of this overview was to analyze at long-term follow-up the radiological and histological evolution of this autograft, in hand and wrist surgery. We extrapolated this autograft technique to the elbow by using perichondrium. Since 1992, 148 patients have undergone chondrocostal autograft: 116 osteoarthritis of the thumb carpometacarpal joint, 18 radioscaphoid arthritis, 6 articular malunions of the distal radius, 4 kienbock's disease, and 4 traumatic loss of cartilage of the proximal interphalangeal (PIP) joint. Perichondrium autografts were used in 3 patients with elbow osteoarthritis. Magnetic Resonance Imaging (MRI) was performed in 19 patients with a mean follow-up of 68 months (4–159). Histological studies were performed on: i) perioperative chondrocostal grafts (n=3), ii) chondrocostal grafts explanted between 2 and 48 months after surgery (n=10), and iii) perioperative perichondrium grafts (n=2). Whatever the indication, the reconstruction by a chondrocostal/ostochondrocostal or perichondrium graft yielded satisfactory clinical results at long-term follow-up. The main question was the viability of the graft. -. For rib cartilage grafting: The radiological study indicated the non-wear of the graft and a certain degree of ossification. The MRI and histology confirmed a very small degree of osseous metaplasia and graft viability. The biopsies showed neo-vascularization of the cartilage that had undergone morphological, constitutional and architectural changes. Comparison of these structural modifications with perioperative chondrocostal graft histology is in progress. -. For perichondrium grafting: The first cases gave satisfactory clinical results but must be confirmed on a larger number of patients. Histological results highlighted a tissue composed of one fibrous layer and one cartilage-like layer, a common composition of supporting tissue. Despite the strong mechanical strain in the hand and wrist, chondrocostal graft is a biological arthroplasty that is trustworthy and secure over the long term, although it can cause infrequent complications inherent to this type of surgery. Despite the inevitable histological modification, the cartilage remains alive and is of satisfactory quality at long term follow-up and fulfills the requirements for interposition and reconstruction of an articular surface. The perichondrium graft constitutes a new arsenal to cure cartilage resurfacing. The importance of perichondrium for the survival of the grafted cartilage, as previously reported, as well as its role in resurfacing, is being investigated


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 46 - 46
1 Aug 2013
Gillespie J Gislason M Ugbolue U Hems T
Full Access

Wrist arthrodesis is a common surgical procedure that provides a high level of functional outcome and pain relief among patients.[1] Upon partial arthrodesis, the wrist experiences changes in load transmission that are influenced by the type of arthrodesis performed. Measuring the load through the wrist joint is difficult, however, combined with computational models [2], it is possible to obtain data regarding the load mechanics of the wrist joint. Although successful fusion rates among patients have been reported, it remains unclear what the biomechanical consequences are. The aim of the study is to quantify pre and post operative load transmission through a cadaveric wrist which has undergone simulated arthrodesis of the radiolunate(RL) joint. An embalmed human wrist was dissected dorsally exposing distal radius, radiocarpal and carpometacarpal joints, and dorsal ligaments. The radioscaphoid(RS) ligament was sacrificed to accommodate insertion of a PPSEN-09375 force sensitive resistor (FSR) into the RS joint. The FSR was calibrated prior to measuring the contact force on the RS joint. The wrist was aligned in the neutral position in cardboard piping, and secured proximally and distally with Dental Plaster (OthoBock Healthcare Plc, Surrey, UK). The midsection of piping was windowed to permit placement of the FSR in the RS joint, and fixation of the RL joint using 2 Kirschner wires. The window was completed circumferentially and the specimen was placed in the Instron where a graduated axial compression was applied at 20 N/min. The results showed that when the radiolunate joint is fused, and a total axial load of 100N is applied, the load transmitted through the RS joint was approx 65N. i.e. 65% of the force. This is greater than the 56% measured experimentally by Blevens et al (1989) in an unfused specimen[3]. We plan to repeat our measurements and compare to an untreated cadaveric wrist