This study was undertaken to elucidate the mechanism of biological repair at the tendon-bone junction in a rat model. The stump of the toe flexor tendon was sutured to a drilled hole in the tibia (tendon suture group, n = 23) to investigate healing of the tendon-bone junction both radiologically and histologically. Radiological and histological findings were compared with those observed in a sham control group where the bone alone was drilled (n = 19). The biomechanical strength of the repaired junction was confirmed by pull-out testing six weeks after surgery in four rats in the tendon suture group.
Patients with bone and muscle weakness from disuse have higher risk of fracture and worse post-injury mortality rates. The goal of this current study was to better inform post-fracture rehabilitation strategies by investigating if physical remobilization following disuse by hindlimb unloading improves osteochondral
This study investigated the quality and quantity of healing of a bone defect following intramedullary reaming undertaken by two fundamentally different systems; conventional, using non-irrigated, multiple passes; or suction/irrigation, using one pass. The result of a measured re-implantation of the product of reaming was examined in one additional group. We used 24 Swiss mountain sheep with a mean tibial medullary canal diameter between 8 mm and 9 mm. An 8 mm ‘napkin ring’ defect was created at the mid-diaphysis. The wound was either surgically closed or occluded. The medullary cavity was then reamed to 11 mm. The Reamer/Irrigator/Aspirator (RIA) System was used for the reaming procedure in groups A (RIA and autofilling) and B (RIA, collected reamings filled up), whereas reaming in group C (Synream and autofilling) was performed with the Synream System. The defect was allowed to auto-fill with reamings in groups A and C, but in group B, the defect was surgically filled with collected reamings. The tibia was then stabilised with a solid locking Unreamed Humerus Nail (UHN), 9.5 mm in diameter. The animals were killed after six weeks. After the implants were removed, measurements were taken to assess the stiffness, strength and
Introduction and Objective. It is widely accepted that interfragmentary strain stimulus promotes
The primary aim was to assess the reliability of ultrasound in the assessment of humeral shaft fracture healing. The secondary aim was to estimate the accuracy of ultrasound assessment in predicting humeral shaft nonunion. Twelve patients (mean age 54yrs [20–81], 58% [n=7/12] female) with a non-operatively managed humeral diaphyseal fracture were prospectively recruited and underwent ultrasound scanning at six and 12wks post-injury. Scans were reviewed by seven blinded observers to evaluate the presence of sonographic callus. Intra- and inter-observer reliability were determined using the weighted kappa and intraclass correlation coefficient (ICC). Accuracy of ultrasound assessment in nonunion prediction was estimated by comparing scans for patients that united (n=10/12) with those that developed a nonunion (n=2/12). At both six and 12wks, sonographic callus was present in 11 patients (10 united, one developed a nonunion) and sonographic bridging callus (SBC) was present in seven patients (all united). Ultrasound assessment demonstrated substantial intra- (6wk kappa 0.75, 95% CI 0.47-1.03; 12wk kappa 0.75, 95% CI 0.46-1.04) and inter-observer reliability (6wk ICC 0.60, 95% CI 0.38-0.83; 12wk ICC 0.76, 95% CI 0.58-0.91). Absence of sonographic callus demonstrated a sensitivity of 50%, specificity 100%, positive predictive value (PPV) 100% and negative predictive value (NPV) 91% in nonunion prediction (accuracy 92%). Absence of SBC demonstrated a sensitivity of 100%, specificity 70%, PPV 40% and NPV 100% (accuracy 75%). Of three patients at risk of nonunion based on reduced radiographic
Fracture fixation has advanced significantly with the introduction of locked plating and minimally invasive surgical techniques. However, healing complications occur in up to 10% of cases, of which a significant portion may be attributed to unfavorable mechanical conditions at the fracture. Moreover, state-of-the-art plates are prone to failure from excessive loading or fatigue. A novel biphasic plating concept has been developed to create reliable mechanical conditions for timely bone healing and simultaneously improve implant strength. The goal of this study was to test the feasibility and investigate the robustness of fracture healing with a biphasic plate in a large animal experiment. Twenty-four sheep underwent a 2mm mid-diaphyseal tibia osteotomy stabilized with either the novel biphasic plate or a control locking plate. Different fracture patterns in terms of defect location and orientation were investigated. Animals were free to fully bear weight during the post-operative period. After 12 weeks, the healing fractures were evaluated for
Introduction. Cancellous and cortical bone used as a delivery vehicle for antibiotics. Recent studies with cancellous bone as an antibiotic carrier in vitro and in vivo showed high initial peak concentrations of antibiotics in the surrounding medium. However, high concentrations of antibiotics can substantially reduce osteoblast replication and even cause cell death. Objectives. To determine whether impregnation with gentamycine impair the incorporation of bone allografts, as compared to allografts without antibiotic. Materials and method. Seventy two healthy rabbits (24 rabbits in each group) were used for this study. Bone defects (3-mm diameter, 10-mm depth) were created in the femur. Human femoral head prepared according to the Marburg bone bank system was used as bone allograft. In the experimental groups, in 1 group - the defects were filled with bone allografts, in 2 group – Perforated Gentamycin-impregnated bone allografts. The control group did not receive any filling. The animals were killed after 14, 30 and 60 days. Evaluations consisted of X-ray plain radiography, histology at 14-, 30- and 60-days post-surgery. Results. Active osteoblast activity and active formation of new bones were detected around the defect area in all groups, but the amount of new bone formation was greater in the experimental groups than the control group. We found no statistically significant differences in the rate of bone formation between 1 and 2 groups at 14, 30 and 60 days in any of the parameters studied. X-ray results showed no significant difference in bony
The course of secondary fracture healing typically consists of four major phases including inflammation, soft and hard
Intramedullary nails (IMNs) are the current gold standard for treatment of long bone diaphyseal and selected metaphyseal fractures. Their design has undergone many revisions to improve fixation techniques, conform to the bone shape with appropriate anatomic fit, reduce operative time and radiation exposure, and extend the indication of the same implant for treatment of different fracture types with minimal soft tissue irritation. The IMNs are made or either titanium alloy or stainless steel and work as load-sharing internal splints along the long bone, usually accommodating locking elements – screws and blades, often featuring angular stability and offering different configurations for multiplanar fixation – to secure secondary fracture healing with
Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides mechanical stimulus that is required for the formation of fracture callus. In clinical settings, interfragmentary motion is induced by physiological loading of the broken bone – for example, by weight-bearing. However, there is no consensus about when mechanical stimuli should be applied to achieve fast and robust healing response. Therefore, this study aims to identify the effect of the immediate and delayed application of mechanical stimuli on secondary bone healing. A partial tibial osteotomy was created in twelve Swiss White Alpine sheep and stabilized using an active external fixator that induced well-controlled interfragmentary motion in form of a strain gradient. Animals were randomly assigned into two groups which mimicked early (immediate group) and late (delayed group) weight-bearing. The immediate group received daily stimulation (1000 cycles/day) from the first day post-op and the delayed group from the 22nd day post-op. Healing progression was evaluated by measurements of the stiffness of the repair tissue during mechanical stimulation and by quantifying callus area on weekly radiographs. At the end of the five weeks period, callus volume was measured on the post-mortem high-resolution computer tomography (HRCT) scan. Stiffness of the repair tissue (p<0.05) and callus progression (p<0.01) on weekly radiographs were significantly larger for the immediate group compared to the delayed group. The callus volume measured on the HRCT was nearly 3.2 times larger for the immediate group than for the delayed group (p<0.01). This study demonstrates that the absence of immediate mechanical stimuli delays
Virtual mechanical testing is a method for measuring bone healing using finite element models built from computed tomography (CT) scans. Previously, we validated a dual-zone material model for ovine fracture callus that differentiates between mineralized woven bone and soft tissue based on radiodensity. 1. The objective of this study was to translate the dual-zone material model from sheep to two important clinical scenarios: human tibial fractures in early-stage healing and late-stage nonunions. CT scans for N = 19 tibial shaft fractures were obtained prospectively at 12 weeks post-op. A second group of N = 33 tibial nonunions with CT scans were retrospectively identified. The modeling techniques were based on our published method. 2. The dual-zone material model was implemented for humans by performing a cutoff sweep for both the 12-week and nonunion groups. Virtual torsional rigidity (VTR) was calculated as VTR = ML/φ [N-m. 2. /°], where M is the moment reaction, L is the diaphyseal segment length, and φ is the angle of twist. As the soft tissue cutoff was increased, the rigidity of the clinical fractures decreased and soft tissue located within the fracture gaps produced higher strains that are not predicted without the dual zone approach. The structural integrity of the nonunions varied, ranging from very low rigidities in atrophic cases to very high rigidities in highly calcified hypertrophic cases, even with dual-zone material modeling. Human fracture calluses are heterogeneous, comprising of woven bone and interstitial soft tissue. Use of a dual-zone callus material model may be instrumental in identifying delayed unions during early healing when
Osteoprogenitors on the inner layer of periosteum are the major cellular contributors to appositional bone growth and bone repair by
Our previous rat study demonstrated an ex vivo-created “Biomimetic Hematoma” (BH) that mimics the intrinsic structural properties of normal fracture hematoma, consistently and efficiently enhanced the healing of large bone defects at extremely low doses of rhBMP-2 (0.33 μg). The aim of this study was to determine if an extremely low dose of rhBMP-2 delivered within BH can efficiently heal large bone defects in goats. Goat 2.5 cm tibial defects were stabilized with circular fixators, and divided into groups (n=2-3): 2.1 mg rhBMP-2 delivered on an absorbable collagen sponge (ACS); 52.5 μg rhBMP-2 delivered within BH; and an empty group. BH was created using autologous blood with a mixture of calcium and thrombin at specific concentrations. Healing was monitored with X-rays. After 8 weeks, femurs were assessed using microCT. Using 2.1 mg on ACS was sufficient to heal 2.5 cm bone defects. Empty defects resulted in a nonunion after 8 weeks. Radiographic evaluation showed earlier and more robust
Our study seeks to determine whether characteristics of radiographs taken post-reduction of a forearm fracture can indicate future risk of refracture or loss of reduction. We hypothesize that reducing forearm fractures too precisely may be counterproductive and provide less benefit than reductions left slightly offset prior to cast immobilization. We conducted a retrospective review of 1079 pediatric patients treated for forearm fractures between January 2014 and September 2021 in a 327 bed regional medical center. Percent fracture displacement, location, orientation, comminution, fracture line visibility and angle of angulation were determined by AP and lateral radiographs. Percent fracture displacement was derived by: (Displacement of Bone Shafts / Diameter) x 100% = %Fracture Displacement. Patients treated with closed reduction were reduced from a mean displacement of 29.26±36.18% at an angulation of 22.67±16.57 degrees to 7.88±9.07% displacement and 3.89±6.68 degrees angulation post-reduction. Patients developing complications including a loss of reduction or refracture were found to have post-operative radiographs with a lower percent displacement (0.50±1.12) than those not developing complications (8.65±9.21)(p=0.0580). Post-reduction angulation (p=1.000), average reduction in angulation (p=1.000) and average reduction in displacement percent(p=0.2102) were not significantly associated with development of complications. Percent displacement of radial shafts was seen to be the most important metric to monitor in post-operative radiographs for patients undergoing closed reduction of a forearm fracture. We theorize a slight displacement provides greater surface area for osteoblastic expansion and
Standard fixation for intra-articular distal humerus fracture is open reduction and internal fixation (ORIF). However, high energy fractures of the distal humerus are often accompanied with soft tissue injuries and or vascular injuries which limits the use of internal fixation. In our report, we describe a highly complex distal humerus fracture that showed promising healing via a ring external fixator. A 26-year-old man sustained a Gustillo Anderson Grade IIIB intra-articular distal humerus fracture of the non-dominant limb with bone loss at the lateral column. The injury was managed with aggressive wound debridement and cross elbow stabilization via a hinged ring external fixator. Post operative wound managed with foam dressing. Post-operatively, early controlled mobilization of elbow commenced. Fracture union achieved by 9 weeks and frame removed once fracture united. No surgical site infection or non-union observed throughout follow up. At 2 years follow up, flexion - extension of elbow is 20°- 100°, forearm supination 65°, forearm pronation 60° with no significant valgus or varus deformity. The extent of normal anatomic restoration in elbow fracture fixation determines the quality of elbow function with most common complication being elbow stiffness. Ring fixator is a non-invasive external device which provides firm stabilization of fracture while allowing for adequate soft tissue management. It provides continuous axial micro-movements in the frame which promotes
Mice are increasingly used for fracture healing research because of the possibility to use transgenic animals to conduct research on the molecular level. Mice from both sexes can be used, however, there is no consensus in the literature if fracture healing differs between female and male mice. Therefore, the aim of the present study was to analyze the similarities and differences in endochondral fracture healing between female and male C57BL/6J mice, since this mouse strain is mainly used in bone research. For that purpose, 12-weeks-old female and male mice received a standardized femur midshaft osteotomy stabilized by an external fixator. Mice were euthanized 10 and 21 days after fracture and bone regeneration was analyzed by biomechanical testing, µCT analysis, histology, immunohistochemistry and gene expression analysis. At day 21, male mice displayed a significantly larger fracture callus than female mice accompanied by higher number of osteoclasts, higher tissue mineral density and absolute values of bone volume, whereas relative bone volume to tissue volume ratio did not differ between the groups. Biomechanical testing revealed significantly increased bending stiffness in both fractured and intact femurs from male vs. female mice, whereas relative bending stiffness of fractured femurs related to the intact femurs did not differ. 10 days after fracture, male mice display significantly more cartilage and less fibrous tissue area in the fracture callus than female mice, whereas bone area did not differ. On the molecular level, male mice displayed increased active β-catenin expression in the fracture callus, whereas estrogen receptor α (ERα) expression was reduced. In conclusion, male mice showed more prominent cartilaginous
In the course of uneventful secondary bone healing, a fracture gap is progressively overgrown by callus which subsequently calcifies and remodels into new bone. It is widely accepted that
Osteosynthesis of high-energy metaphyseal proximal tibia fractures is still challenging, especially in patients with severe soft tissue injuries and/or short stature. Although the use of external fixators is the traditional treatment of choice for open comminuted fractures, patients' acceptance is low due to the high profile and therefore the physical burden of the devices. Recently, clinical case reports have shown that supercutaneous locked plating used as definite external fixation could be an efficient alternative. Therefore, the aim of this study was to evaluate the effect of implant configuration on stability and interfragmentary motions of unstable proximal tibia fractures fixed by means of externalized locked plating. Based on a right tibia CT scan of a 48 years-old male donor, a finite element model of an unstable proximal tibia fracture was developed to compare the stability of one internal and two different externalized plate fixations. A 2-cm osteotomy gap, located 5 cm distally to the articular surface and replicating an AO/OTA 41-C2.2 fracture, was virtually fixed with a medial stainless steel LISS-DF plate. Three implant configurations (IC) with different plate elevations were modelled and virtually tested biomechanically: IC-1 with 2-mm elevation (internal locked plate fixation), IC-2 with 22-mm elevation (externalized locked plate fixation with thin soft tissue simulation) and IC-3 with 32-mm elevation (externalized locked plate fixation with thick soft tissue simulation). Axial loads of 25 kg (partial weightbearing) and 80 kg (full weightbearing) were applied to the proximal tibia end and distributed at a ratio of 80%/20% on the medial/lateral condyles. A hinge joint was simulated at the distal end of the tibia. Parameters of interest were construct stiffness, as well as interfragmentary motion and longitudinal strain at the most lateral aspect of the fracture. Construct stiffness was 655 N/mm (IC-1), 197 N/mm (IC-2) and 128 N/mm (IC-3). Interfragmentary motions under partial weightbearing were 0.31 mm (IC-1), 1.09 mm (IC-2) and 1.74 mm (IC-3), whereas under full weightbearing they were 0.97 mm (IC-1), 3.50 mm (IC-2) and 5.56 mm (IC-3). The corresponding longitudinal strains at the fracture site under partial weightbearing were 1.55% (IC-1), 5.45% (IC-2) and 8.70% (IC-3). From virtual biomechanics point of view, externalized locked plating of unstable proximal tibia fractures with simulated thin and thick soft tissue environment seems to ensure favorable conditions for
Purpose. Gustilo type III open fractures are associated with high infection rates in spite of instituting a standard of care (SOC) consisting of intravenous antibiotics, irrigation and debridement (I&D), and delayed wound closure. Locally-delivered antibiotic has been proven to assist in reducing infection in open fractures. The aims of this study are to determine the effectiveness and safety of a new implantable and biodegradable antibacterial product. 1. in preventing bacterial infections and initiating bone growth in open fractures. Methods. The osteoconductive antibacterial BonyPid. TM. used is a synthetic bone void filler (comprised of ≤1 mm β-tricalcium phosphate granules) coated by a thin layer (≤20 µm) of PolyPid nanotechnology formulation. −. Upon implantation, the coating releases doxycycline at a constant rate for a predetermined period of 30 days. One BonyPid. TM. vial of 10 grams contains 65 mg of formulated doxycycline. After approval, sixteen subjects with Gustilo type III open tibia fractures, were implanted with the BonyPid. TM. immediately on the first surgical intervention (I&D), followed by external fixation. Patients had periodic laboratory, bacteriology and radiology follow-up. Results. Six months results showed that no infection developed and only one BonyPid. TM. implantation was needed with no subsequent I&D, in the target tibia fracture. Immediate soft wound closure was done in 6/16 subjects following implantation. Out of 10 remaining subjects, 3 needed soleus muscle transfer-skin grafting and 7 required delayed primary closure; by skin grafting (5) or suturing (2). Early
Summary. Randomised controlled study evaluating new bone formation in vivo in fracture non-unions by bone marrow derived stromal cells (BMSC). These cells do not show statistically significant new bone formation. Age of the patient during fracture, diabetes and doubling time had been observed to be correlated with fracture healing. Introduction. Regenerating new bone by cell therapy could provide therapeutic options in many conditions such as fracture non-unions and osteo-chondral defect regeneration in advance OA. In this randomised controlled study we evaluated the efficacy of new bone formation by bone marrow derived stromal cells (BMSC) in patients with non-union. Methods. An ethically approved and adequately powered single centre randomised control trial recruited 35 patients for treatment of non-unions with BMSC. Bone marrow was harvested and autologous BMSC were culture expanded in autologous serum at our local MHRA-licensed facility (Oscell, Oswestry, UK). Following selection by adherence and in vitro culture expansion using autologous serum, cells in serum and serum alone was randomised for insertion at one of the two fracture sides by StratOs® computer software. Patients and the operating surgeon were blinded to the side of cell insertion. Such method of randomisation created internal controls at the fracture sites- one side receiving the cell (‘test side’) and other, not (‘control’). Serial radiographs extending up to an average of twelve months were evaluated by four independent assessors blinded to side of cell insertion.