This study was undertaken to elucidate the mechanism of biological repair at the tendon-bone junction in a rat model. The stump of the toe flexor tendon was sutured to a drilled hole in the tibia (tendon suture group, n = 23) to investigate healing of the tendon-bone junction both radiologically and histologically. Radiological and histological findings were compared with those observed in a sham control group where the bone alone was drilled (n = 19). The biomechanical strength of the repaired junction was confirmed by pull-out testing six weeks after surgery in four rats in the tendon suture group.
In patients with traumatic brain injury and fractures
of long bones, it is often clinically observed that the rate of bone
healing and extent of
The effect of head injury on systemic physiology, including bone healing is still a topic of vivid discussion. We aimed to investigate whether in patients with long bone fractures the presence of head injury is associated with excessive
Patients with bone and muscle weakness from disuse have higher risk of fracture and worse post-injury mortality rates. The goal of this current study was to better inform post-fracture rehabilitation strategies by investigating if physical remobilization following disuse by hindlimb unloading improves osteochondral
Introduction: Angiogenesis is essential during bone formation. Many studies have looked at the developing vascular network during normal and abnormal bone growth, using histological, immunohistological and contrast-radiological techniques; however all require sacrifice of animals to obtain tissue samples for examination and consequently chronological investigation of angiogenesis is not possible. We have endeavoured to produce an animal model, whereby quantitative assessment of blood flow, and
A case of hyperplastic
In osteogenesis imperfecta the
Our purpose is to use radiographs to compare
This study investigated the quality and quantity of healing of a bone defect following intramedullary reaming undertaken by two fundamentally different systems; conventional, using non-irrigated, multiple passes; or suction/irrigation, using one pass. The result of a measured re-implantation of the product of reaming was examined in one additional group. We used 24 Swiss mountain sheep with a mean tibial medullary canal diameter between 8 mm and 9 mm. An 8 mm ‘napkin ring’ defect was created at the mid-diaphysis. The wound was either surgically closed or occluded. The medullary cavity was then reamed to 11 mm. The Reamer/Irrigator/Aspirator (RIA) System was used for the reaming procedure in groups A (RIA and autofilling) and B (RIA, collected reamings filled up), whereas reaming in group C (Synream and autofilling) was performed with the Synream System. The defect was allowed to auto-fill with reamings in groups A and C, but in group B, the defect was surgically filled with collected reamings. The tibia was then stabilised with a solid locking Unreamed Humerus Nail (UHN), 9.5 mm in diameter. The animals were killed after six weeks. After the implants were removed, measurements were taken to assess the stiffness, strength and
The experiments showed that the administration of sodium citrate retards fracture healing. This is probably due to a change in the solubility of the calcium or to a relative calcium deficiency on account of the excretion in the urine, or to a combination of both factors. Other reasons cannot, however, be excluded, such as a biochemical effect on the ground substance or an enzyme deficiency.
The aim of this study was to examine whether the assessment BsALP as a biochemical parameter in the early posttraumatic phase may indicate the course of fracture healing. The methods used for monitoring the bone healing process have been based on the patient’s subjective evaluation and radiographic findings. The activity of bone-specific alkaline phosphatase was measured in the sera of 41 patients who had sustained fractures of long bones. All the patients had been treated surgically. The activity of BsALP was assessed every seven days over a four-week period. The same patients were subject to radiology follow-ups for several months. Our research showed that the increase of alkaline phosphatase correlated with an increase of BsALP levels. The volume of callus correlated with a decrease, no change or an increase in the level of ALP and BsALP in the same way. It can be concluded that the monitoring of changes in the biochemical parameters of alkaline phosphatase and bone-specific alkaline phosphatase allows the early detection of the fracture healing dynamics.
The torsion testing in Ibandronate had 51% greater toughness than placebo and 69% greater than the non-OVX group. Ibandronate increased trabecular number significantly over the placebo and was not significantly different from the non-OVX group. Trabecular separation was less in Ibandronate compared to the placebo group. Volume in the trabecular neck increased by 35% for the Ibandronate over the placebo.
Lengthening of the humerus is now an established
technique. We compared the complications of humeral lengthening
with those of femoral lengthening and investigated whether or not
the
Aims. Given the possible radiation damage and inaccuracy of radiological investigations, particularly in children, ultrasound and superb microvascular imaging (SMI) may offer alternative methods of evaluating new bone formation when limb lengthening is undertaken in paediatric patients. The aim of this study was to assess the use of ultrasound combined with SMI in monitoring new bone formation during limb lengthening in children. Methods. In this retrospective cohort study, ultrasound and radiograph examinations were performed every two weeks in 30 paediatric patients undergoing limb lengthening. Ultrasound was used to monitor new bone formation. The number of vertical vessels and the blood flow resistance index were compared with those from plain radiographs. Results. We categorized the new bone formation into three stages: stage I (early lengthening), in which there was no obvious
Introduction and Objective. It is widely accepted that interfragmentary strain stimulus promotes
The primary aim was to assess the reliability of ultrasound in the assessment of humeral shaft fracture healing. The secondary aim was to estimate the accuracy of ultrasound assessment in predicting humeral shaft nonunion. Twelve patients (mean age 54yrs [20–81], 58% [n=7/12] female) with a non-operatively managed humeral diaphyseal fracture were prospectively recruited and underwent ultrasound scanning at six and 12wks post-injury. Scans were reviewed by seven blinded observers to evaluate the presence of sonographic callus. Intra- and inter-observer reliability were determined using the weighted kappa and intraclass correlation coefficient (ICC). Accuracy of ultrasound assessment in nonunion prediction was estimated by comparing scans for patients that united (n=10/12) with those that developed a nonunion (n=2/12). At both six and 12wks, sonographic callus was present in 11 patients (10 united, one developed a nonunion) and sonographic bridging callus (SBC) was present in seven patients (all united). Ultrasound assessment demonstrated substantial intra- (6wk kappa 0.75, 95% CI 0.47-1.03; 12wk kappa 0.75, 95% CI 0.46-1.04) and inter-observer reliability (6wk ICC 0.60, 95% CI 0.38-0.83; 12wk ICC 0.76, 95% CI 0.58-0.91). Absence of sonographic callus demonstrated a sensitivity of 50%, specificity 100%, positive predictive value (PPV) 100% and negative predictive value (NPV) 91% in nonunion prediction (accuracy 92%). Absence of SBC demonstrated a sensitivity of 100%, specificity 70%, PPV 40% and NPV 100% (accuracy 75%). Of three patients at risk of nonunion based on reduced radiographic
Aims. Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Methods. Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis.
Fracture fixation has advanced significantly with the introduction of locked plating and minimally invasive surgical techniques. However, healing complications occur in up to 10% of cases, of which a significant portion may be attributed to unfavorable mechanical conditions at the fracture. Moreover, state-of-the-art plates are prone to failure from excessive loading or fatigue. A novel biphasic plating concept has been developed to create reliable mechanical conditions for timely bone healing and simultaneously improve implant strength. The goal of this study was to test the feasibility and investigate the robustness of fracture healing with a biphasic plate in a large animal experiment. Twenty-four sheep underwent a 2mm mid-diaphyseal tibia osteotomy stabilized with either the novel biphasic plate or a control locking plate. Different fracture patterns in terms of defect location and orientation were investigated. Animals were free to fully bear weight during the post-operative period. After 12 weeks, the healing fractures were evaluated for
Introduction. Cancellous and cortical bone used as a delivery vehicle for antibiotics. Recent studies with cancellous bone as an antibiotic carrier in vitro and in vivo showed high initial peak concentrations of antibiotics in the surrounding medium. However, high concentrations of antibiotics can substantially reduce osteoblast replication and even cause cell death. Objectives. To determine whether impregnation with gentamycine impair the incorporation of bone allografts, as compared to allografts without antibiotic. Materials and method. Seventy two healthy rabbits (24 rabbits in each group) were used for this study. Bone defects (3-mm diameter, 10-mm depth) were created in the femur. Human femoral head prepared according to the Marburg bone bank system was used as bone allograft. In the experimental groups, in 1 group - the defects were filled with bone allografts, in 2 group – Perforated Gentamycin-impregnated bone allografts. The control group did not receive any filling. The animals were killed after 14, 30 and 60 days. Evaluations consisted of X-ray plain radiography, histology at 14-, 30- and 60-days post-surgery. Results. Active osteoblast activity and active formation of new bones were detected around the defect area in all groups, but the amount of new bone formation was greater in the experimental groups than the control group. We found no statistically significant differences in the rate of bone formation between 1 and 2 groups at 14, 30 and 60 days in any of the parameters studied. X-ray results showed no significant difference in bony