Helical plates potentially bypass the medial neurovascular structures of the thigh. Recently, two plate designs (90°- and 180°-helix) proved similar biomechanically behaviour compared to straight plates. Aims of this study were: (1) Feasibility of MIPO-technique with 90°- and 180°-helical plates on the femur, (2) Assessment of distances to adjacent anatomical structures at risk, (3) Comparison of these distances to using medial straight plates instead, (4) Correlation of measurements performed in anatomic dissection with CT-angiography. MIPO was performed in ten cadaveric femoral pairs using either a 90°-helical 14-hole-LCP (Group1) or a 180°-helical 15-hole-LCP-DF (Group2).
The aim of this study was to establish a classification system for the acromioclavicular joint using cadaveric dissection and radiological analyses of both reformatted computed tomographic scans and conventional radiographs centred on the joint. This classification should be useful for planning arthroscopic procedures or introducing a needle and in prospective studies of biomechanical stresses across the joint which may be associated with the development of joint pathology. We have demonstrated three main three-dimensional morphological groups namely flat, oblique and curved, on both cadaveric examination and radiological assessment. These groups were recognised in both the coronal and axial planes and were independent of age.