Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 49 - 49
1 Aug 2020
Sheyn D Papalamprou A Chahla J Chan V Limpisvasti O Mandelboum B Metzger M
Full Access

The meniscus is at the cornerstone of knee joint function, imparting stability and ensuring shock absorption, load transmission, and stress distribution within the knee joint. However, it is very vulnerable to injury and age-related degeneration. Meniscal tears are reported as the most common pathology of the knee with a mean annual incidence of 66 per 100,000. Knee osteoarthritis progresses more rapidly in the absence of a functional meniscus. Historically, tears extending to the avascular inner portion of the meniscus (white-white zone, “WW”), such as radial tears were considered as untreatable and were often resected, due to the lack of vascularity in the WW zone. Perfusion-based anatomical studies performed on cadaveric menisci in the 1980s shaped the current dogma that human meniscus has poor regenerative capacity, partly due to limited blood supply that only reaches 10 to 25% of the meniscus, commonly referred to as red-red zone (“RR”). Previous studies, including those utilizing animal models have shown mobilization of Mesenchymal Stem Cells (MSCs) upon injury into the WW zone, and successful MSC recruitment when administered externally to the injury site. We and others have recently reported positive outcomes of repaired tears in the inner zone of patients. We hypothesized that the “avascular” white-white zone of the meniscus possesses regenerative capacity due to a resident stem/progenitor cell population. Further, we sought to redefine the presence of microvessels in all meniscal zones using advanced stereology and imaging modalities. Fifteen menisci from fresh human cadaveric knees (mean age: 21.53±6.53 years) without evidence of previous injury were obtained from two tissue banks (JRF, Centennial, CO) and Biosource Medical (Lakeland, FL) and utilized for this study. The use of cadaveric specimens for research purposes was approved by the institutional review board. Tibial plateaus were dissected to harvest medial and lateral menisci along their entire length. The RR, red-white (RW) and WW zones were dissected and separated into three thirds from the inner aspect to the marginal border of the meniscus and their wet weights recorded (Fig.1A). Meniscus tissue cellular content in each zone was obtained from dissociation of meniscus tissue using 0.02% w/v pronase (Millipore) for 1h at 37oC, followed by 18h 0.02% w/v collagenase II (Worthington) at 37oC with shaking. Isolated cells were characterized immediately after harvest using flow cytometry with antibodies against MSCs surface markers (CD105, CD90, CD44 and CD29) as well as respective isotype controls. Further, meniscal cells were cultured and split twice when confluence was reached, characterized at P2 and compared to bone marrow-derived MSCs (BM-MSCs) using the same markers. Self-renewal of cells was assessed using colony forming unit (CFU) assay. Differentiation assays were performed to assess whether colony-forming cells retained multilineage potential. For morphological examination of bigger vessels, samples were fixed in 10% formalin for 1 week, paraffin embedded, sectioned (4 μm thick) and stained with H&E and Masson's trichrome. Presence of microvessels was assessed by CD31 immunofluorescence staining. Further, menisci were cleared using the uDisco protocol labeled with the TO-PRO®-3 stain, a fluorescent dye that stains cell nuclei and imaged using light-sheet microscopy. All continuous data are presented as mean ±standard deviation. Non-repeated measures analysis of variance (ANOVA) and Tukey-Kramer HSD post hoc analysis were performed on sample means for continuous variables. Statistical significance was set at p < 0 .05. Menisci were successfully cleared using a modified uDISCO procedure, imaged and analyzed for total cell density. As expected, bigger vessels were observed in RR but not in WW. However, immunofluorescent staining for CD31 showed a subset of CD31+endothelial cells present in the WW zone, indicating the presence of small vessels, most likely capillaries. In order to assess whether enzymatic digestion had a differential result depending on meniscus zone due to cellular content, we analyzed yields per meniscus per zone. The wet weight of different zones (WW:RW:RR) was at a ratio of ∼1:3:5 respectively, however, the ratio of cells isolated from each zone was at ∼1:4:20, indicating that RR has a denser population of mononuclear cells. However, the difference between all zones in cell yields was not significant. The clonogenic potential of isolated cells was shown to be non-significantly different between the three zones. Differentiation of isolated cells to osteogenic lineage using osteogenic media in vitroshowed no difference between the three zones. Flow cytometry analysis of cells from the three meniscal zones displayed presence of two distinct subpopulations of cells immediately after isolation. One subpopulation was positive to MSC surface markers and the other negative. Additionally, flow cytometry of cultured meniscal cells at P2 displayed that the entire cell population was CD44+CD105+CD29+CD90+, suggesting that culturing meniscal cells results in selection of stem/progenitor cells (plastic adherence). Surface marker expression analysis showed differential expression patterns between markers depending on zone. Similar fraction of cells was detected to express both MSC markers CD90 and CD105 (7–10%) and similar fraction of cells expressed both MSC markers CD29 and CD44 (1–2%) in all three zones, indicating similar density of resident stem/progenitor cells in each zone. Importantly, WW showed significantly higher expression for all four MSC markers compared to the RR zone, indicating higher relative density of stem/progenitor resident cells in the WW zone. Our results determine that CD31-expressing microvessels were present in all zones, including the WW zone, which was previously considered completely avascular. Additionally, stem/progenitor cells were shown to be present in all three zones of the menisci, including the WW zone, showcasing its regenerative potential. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 16 - 16
1 Jul 2020
Docheva D Lin D
Full Access

Tenomodulin (Tnmd) is the best known mature tendon factor for tendon and ligament tissues with reported important regulatory roles1. In addition, Tnmd C-terminal cysteine-rich domain has been descibed to exert anti-angiogenic functions in in vitro angiogenic assays as well as in vivo models of tendon injury and age-associated cardiac valve diseases1, 2. Interestingly, Tnmd expresson in the intervertebral disc (IVD), which is normally avascular tissue, has been also suggested3. Hence, the purpose of this study was first, to map the exact expression pattern of Tnmd during IVD development and aging and second, by implementing Tnmd-knockout mouse model, to examine if Tnmd plays a role in IVD homeostasis. Histological analyses (hematoxylin/eosin, Safranin O, CD31 for endothelium, TUNEL for apoptosis and type X collagen and Runx2 for hypetrophy) were performed on Tnmd −/−, Tnmd −/− and chondromodulin I Chmd 1 −/− (Tnmd only homolog) double knockout and wild type mice WT (n = three to five) to examine IVD degeneration. Real time PCR was implemented to explore gene expression chnages in annulus fibrous (AF) between Tnmd −/− and WT mice. In addition, outer AF (OAF) cells were isolated from both genotypes to further determine cellular phenotype and assess effects on co-culture with human umbical vein endothelial cells (HUVECs). Statistical differences between two groups were determined with t-test. In multiple comparisons, one-way ANOVA was followed by Bonferroni post-hoc correction. Tnmd was expressed in a temporal manner in OAF and to very low extent in NP. Tnmd −/− mice exhibited more rapid progression of age-related IVD degeneration. These signs included smaller collagen fibril diameter, reduced multiple IVD- and tendon/ligament-related gene expression, induced angiogenesis and inflamatory cell infiltration in OAF as well as more hypertrophic-like chondrocytes in the NP. In addition, Tnmd−/− Chm1 −/− mice displayes not only accelerated IVD phenotpye, but also ectopic bone formation in the IVD. Lastly, the abscence of Tnmd in OAF-derived cells significantly promoted HUVECs migratory capacity. These findings provide clear evidence that Tnmd plays a critical role in IVD homeostasis


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 44 - 44
1 Aug 2020
Li Z Geng Z Cui Z Wu S Zhu S Liang Y Yang X
Full Access

Surgical failure, mainly caused by loosening implants, causes great mental and physical trauma to patients. Improving the physicochemical properties of implants to achieve favourable osseointegration will continue to be the focus of future research. Strontium (Sr), a trace element, is often incorporated into hydroxyapatite (HA) to improve its osteogenic activity. Our previous studies have shown that miR-21 can promote the osteogenic differentiation of mesenchymal stem cells by the PI3K/β-catenin pathway. The aim of this study is to fabricate a SrHA and miR-21 composite coating and it is expected to have a favorable bone healing capability. Ti discs (20 mm diameter and one mm thickness for the in vitro section) and rods (four mm diameter and seven mm length for the in vivo section) were prepared by machining pure Ti. The Ti cylinders were placed in a Teflon-lined stainless-steel autoclave for treating at 150°C for 24 h to form SrHA layer. The miR-21 was encapsulated in nanocapsules. The miR-21 nanocapsules were mixed with CMCS powder to form a gel-like sample and uniformly coated on the SrHA modifed Ti. Osteoblast-like MG63 cells were cultured on SrHA and miR-21 modified Ti, Cell proliferation activity and osteogenesis-related gene expression were evaluated. A bone defect model was established with mature New Zealand to evaluate the osseointegration. Cylindrical holes (four mm in diameter) were created at the distal femur and tibial plateau. Each rabbit was implanted with four of the aforementioned rods (distal femur and tibial plateau of the hind legs). After implantation for one, two and three months, the rabbits were observed by X-ray and scanned using u-CT. Histological and Immunohistochemical analysis were performed to examine the osteogenic markers. A biomechanical push-in test was used to assess the bone-implant bonding strength. Both SrHA nanoparticles with good superhydrophilicity and miR-21 nanocapsules with uniform sizes were distributed evenly on the surface of the Ti. In vitro experiments revealed that the composite coating was beneficial to osteoblast proliferation, differentiation and mineralization. In vivo evaluations demonstrated that this coating could not only promote the expression of angiogenic factor CD31 but also enhance the expression of osteoblastic genes to facilitate angio-osteogenesis. In addition, the composite coating also showed a decreased RANKL expression compared with the miR-21 coating. As a result, the SrHA/miR-21 composite coating promoted new bone formation and mineralization and thus enhanced osseointegration and bone-implant bonding strength. A homogeneous SrHA and miR-21 composite coating was fabricated by generating pure Ti through a hydrothermal process, followed by adhering miR-21 nanocapsules. This coating combined the favorable physicochemical properties of SrHA and miR-21 that synergistically promoted angiogenesis, osteogenesis, osseointegration, bone mineralization and thus bone-implant bonding strength. This study provided a new strategy for surface modification of biomedical implants