Introduction. The management of thoracolumbar
Purpose: The mechanical integrity of vertebral bone is compromised when metastatic cancer cells migrate to the spine, rendering it susceptible to
Purpose: Stability of thoracic vertebrae affected by metastatic disease has been shown to be dependent on tumour size and bone density, but additional structural and geometric factors may also play a role in
Spinal metastatic disease can result in
We present a series of 14 patients presenting to the senior surgeon’s practice who sustained thoracolumbar
Introduction: The management of thoraco-lumbar
The purpose of this study was to determine whether
patients with a
Many authors recommend surgery to remove retropulsed bone fragments from the canal in
Introduction The precise contribution of the posterior longitudinal ligament (PLL) and disc annulus in the
The purpose was to present a case of cauda equina entrapment in a lumbar
Plain radiographs of 67 acute spinal compression fractures in 49 patients were analysed by subjective and objective criteria, using CT scans as the diagnostic standard for the diagnosis of
In 139 patients with
Methods. In this study of patients who underwent internal fixation without
fusion for a burst thoracolumbar or lumbar fracture, we compared
the serial changes in the injured disc height (DH), and the fractured
vertebral body height (VBH) and kyphotic angle between patients
in whom the implants were removed and those in whom they were not. Radiological
parameters such as injured DH, fractured VBH and kyphotic angle
were measured. Functional outcomes were evaluated using the Greenough
low back outcome scale and a VAS scale for pain. Results. Between June 1996 and May 2012, 69 patients were analysed retrospectively;
47 were included in the implant removal group and 22 in the implant
retention group. After a mean follow-up of 66 months (48 to 107),
eight patients (36.3%) in the implant retention group had screw
breakage. There was no screw breakage in the implant removal group.
All radiological and functional outcomes were similar between these
two groups. Although solid union of the fractured vertebrae was
achieved, the kyphotic angle and the anterior third of the injured
DH changed significantly with time (p <
0.05). . Discussion. The radiological and functional outcomes of both implant removal
and retention were similar. Although screw breakage may occur, the
implants may not need to be removed. Take home message: Implant removal may not be needed for patients
with
Two cases of
Aim of Study: (A) To study what causes Anterior Column Deficiency in
The purpose of this study was to evaluate and
compare the effect of short segment pedicle screw instrumentation and
an intermediate screw (SSPI+IS) on the radiological outcome of type
A thoracolumbar fractures, as judged by the load-sharing classification,
percentage canal area reduction and remodelling. We retrospectively evaluated 39 patients who had undergone hyperlordotic
SSPI+IS for an AO-Magerl Type-A thoracolumbar fracture. Their mean
age was 35.1 (16 to 60) and the mean follow-up was 22.9 months (12
to 36). There were 26 men and 13 women in the study group. In total,
18 patients had a load-sharing classification score of seven and
21 a score of six. All radiographs and CT scans were evaluated for
sagittal index, anterior body height compression (%ABC), spinal
canal area and encroachment. There were no significant differences
between the low and high score groups with respect to age, duration
of follow-up, pre-operative sagittal index or pre-operative anterior
body height compression (p = 0.217, 0.104, 0.104, and 0.109 respectively).
The mean pre-operative sagittal index was 19.6° (12° to 28°) which
was corrected to -1.8° (-5° to 3°) post-operatively and 2.4° (0°
to 8°) at final follow-up (p = 0.835 for sagittal deformity). No
patient needed revision for loss of correction or failure of instrumentation. Hyperlordotic reduction and short segment pedicle screw instrumentation
and an intermediate screw is a safe and effective method of treating
burst fractures of the thoracolumbar spine. It gives excellent radiological
results with a very low rate of failure regardless of whether the
fractures have a high or low load-sharing classification score. Cite this article
Spinal fractures are common following underbody blast. Most injuries occur at the thoracolumbar junction, and fracture patterns suggest the spine is flexed at the moment of injury. However, current mechanistic descriptions of vertebral fractures are based on low energy injuries, and there is no evidence to correlate fracture pattern with posture at the loading rates seen in blast injury. The T12-L1 segment of 4 human spines was dissected to preserve the paraspinal ligaments and potted in polymethylmecrylate. The specimens were impacted with a 14 kg mass at 3.5m/s in a drop tower; two specimens were impacted in neutral posture, one in flexion, and one in extension. A load cell measured the load history. CT scans and dissection identified the injury patterns. Each specimen sustained a