Summary Statement. Extended expansion of cells derived from equine articular cartilage reveal maintenance of chondrogenic potency and no evidence of senescence up to 100 population doublings. The data suggests the reclassification of these cells from progenitor cells to stem cells. Introduction. One sign of ‘in vitro aging’ is the diminishing capacity for cell division. In contrast to embryonic stem cells that show no loss of proliferative potency, the maximal population doublings (PD) for mesenchymal stem cells (MSCs) in vitro is reported to be between 30 and 40 replications 1,2,3. We have isolated a population of chondroprogenitor cells from articular cartilage of several species, including equine4. These cells have demonstrated functional equivalence in their differentiation capacity when compared with MSCs but have the advantage of retaining the highly desirable stable (permanent) chondrocyte phenotype. In this study, we examined the age-related capacity of these cells for extended division and retention of potency. Methods. Chondroprogenitors were isolated from equine articular cartilage by adhesion onto fibronectin5. Cells were isolated from both skeletally immature (1 year-old) and mature animals (8 year-old). Clonal and polyclonal cell lines (at least 5 of each for each age) were cultured in the presence of 10% FCS, 1ng/ml TGFb-1 & 2.5 ng/ml FGF-2. Cells were seeded at low density and passaged weekly. Results. Chondroprogenitors from both animals reached over 40 (mean) PD in 50 days with growth remaining linear. Little difference in growth rates was observed between clonal and polyclonal cell lines. For the mature animal, 96% of cells were
Hematopoietic stem cells (HSCs) reside within a specialised niche area in the bone marrow (BM). They have tremendous clinical relevance, although HSC expansion and culture ex vivo is not currently possible, reducing BM transplant success. This project expands a novel 3D MSC niche model developed in our lab to include HSCs. MSCs were loaded with green fluorescent magnetic iron oxide (FeO. 3. ) nanoparticles (200 nm diameter) at a concentration of 0.1 mg ml. −1. , and incubated for 30 min over a magnet to enhance cellular uptake. The cells were washed, detached and resuspended, then transferred to a plate with magnets above. Spheroids formed within hours and were implanted into 2 mg ml. −1. collagen gel. HSCs were loaded with nanoparticles via incubation with suspension, and then introduced to the gel containing the spheroid. Immunostaining,
Previous studies have shown that Tnmd is important for tendon maturation and has key implications for the residing tendon stem/progenitor cells. The putative signaling in which Tnmd participates is just starting to be better understood (Dex et al. 2016). However, its exact functions during tendon healing process still remain elusive. Therefore, the aims of this study were to perform systematic review of the literature on Tnmd-related research and to investigate the role of Tnmd in early tendon healing by applying a tendon rupture model in Tnmd-deficient mice. First, we searched in the PubMed database for articles containing “tenomodulin” or its alternative names and abbreviations. After exclusion of papers only available in abstract form and foreign language, we grouped the remaining 128 full-text publications into four study types: 1) looking into functions of Tnmd; 2) using Tnmd as a tendon marker; 3) correlating Tnmd mutations to a variety of diseases; and 4) reviews. Following literature analysis, we carried out a pilot Achilles tendon injury model with Tnmd-knockout (KO) mouse strain. Adult Tnmd-KO (n = 8) and wild-type (WT) (n = 8) mice underwent unilateral surgery of Achilles tendon based on Palmes et al. 2002 and were compared at day 8 postoperatively by: 1) H&E staining for overall assessment; 2) immunohistochemical
Summary. Silver nanoparticles improve the tensile property of the repaired Achilles tendon by modulating the synthesis and deposition of collagen. This makes silver nanoparticles a potential drug for tendon healing process with less undesirable side effect. Introduction. Tendon injury is a common injury that usually takes a long time to fully recover and often lead to problems of joint stiffness and re-rupture due to tissue adhesions and scarring on the repaired tendon respectively. Recently, it has been proven that silver nanoparticles (AgNPs) are capable of regenerating skin tissue with minimal scarring and comparable tensile property to normal skin. Hence, it is hypothesised that AgNPs could also improve the healing in tendon injury as both tissues are predominating with fibroblasts. The objective of this study is to look at the in vitro response of primary tenocytes to AgNPs and to investigate the mechanical and histological outcome in vivo. Methods and Materials. Primary tenocytes were harvested from 4 weeks old Sprague Dawley rat. 1.5×10. 4. cells per cm. 2. were seeded in triplicate for
Healthcare associated infections (HAI) pose a major threat to patients admitted to hospitals, and infection rates following orthopaedic arthroplasty surgery are as high as 4%, while the infection rates are even higher after revision surgery. 405 nm High-Intensity Narrow Spectrum (HINS) light has been proven to reduce environmental contamination in hospital isolation rooms, and there is potential to develop this technology for application in orthopaedic surgery. Cultured rat osteoblasts were exposed to 405 nm light to investigate if bactericidal doses of light could be used safely in the presence of mammalian cells. Cell viability was measured by MTT reduction and microscopy techniques, function by alkaline phosphatase activity, and proliferation by the
Introduction. The use of platelet-rich concentrate (PRC) to enhance the healing response in tendon repair is currently an area of considerable interest. Activated platelets release a cocktail of growth factors and ECM regulating molecules. Previous work suggests that tenocytes are activated by contact with these clot-derived molecules. Our studies on tenocytes and PRC aim to establish the direct molecular and functional effects of PRC on tenocytes and to support the clinical research on Achilles tendon repair taking place within our group. We hypothesise that applying PRC to human tenocytes in culture will increase proliferation rate and survival by activating relevant signalling pathways. Materials and Methods. Using a centrifugation method, PRC was extracted from fresh human whole blood. The PRC was immediately clotted and left in medium overnight to release biological factors (at least 95% of presynthesized growth factors are secreted in the first hour of activation). 1. Human tenocytes derived from explanted healthy hamstring were used for up to three passages. Cells were treated with varying concentrations of PRC-conditioned medium and assessed for viable cell number (Alamar Blue™ fluorescence) and proliferation (Ziva™ Ultrasensitive
We used interconnected porous calcium hydroxyapatite ceramic to bridge a rabbit ulnar defect. Two weeks after inducing the defect we percutaneously injected rabbit bone marrow-derived mesenchymal stromal cells labelled with ferumoxide. The contribution of an external magnetic targeting system to attract these cells into the ceramic and their effect on subsequent bone formation were evaluated. This technique significantly facilitated the infiltration of ferumoxide-labelled cells into ceramic and significantly contributed to the enhancement of bone formation even in the chronic phase. As such, it is potentially of clinical use to treat fractures, bone defects, delayed union and nonunion.
The response of the muscle is critical in determining the functional outcome of limb lengthening. We hypothesised that muscle response would vary with age and therefore studied the response of the muscles during tibial lengthening in ten young and ten mature rabbits. A bromodeoxyuridine technique was used to identify the dividing cells. The young rabbits demonstrated a significantly greater proliferative response to the distraction stimulus than the mature ones. This was particularly pronounced at the myotendinous junction, but was also evident within the muscle belly. Younger muscle adapted better to lengthening, suggesting that in patients in whom a large degree of muscle lengthening is required it may be beneficial to carry out this procedure when they are young, in order to achieve the optimal functional result.
Little is known about the increase in length of tendons in postnatal life or of their response to limb lengthening procedures. A study was carried out in ten young and nine adult rabbits in which the tibia was lengthened by 20% at two rates 0.8 mm/day and 1.6 mm/day. The tendon of the flexor digitorum longus (FDL) muscle showed a significant increase in length in response to lengthening of the tibia. The young rabbits exhibited a significantly higher increase in length in the FDL tendon compared with the adults. There was no difference in the amount of lengthening of the FDL tendon at the different rates. Of the increase in length which occurred, 77% was in the proximal half of the tendon. This investigation demonstrated that tendons have the ability to lengthen during limb distraction. This occurred to a greater extent in the young who showed a higher proliferative response, suggesting that there may be less need for formal tendon lengthening in young children.
For the treatment of ununited fractures, we developed
a system of delivering magnetic labelled mesenchymal stromal cells
(MSCs) using an extracorporeal magnetic device. In this study, we
transplanted ferucarbotran-labelled and luciferase-positive bone
marrow-derived MSCs into a non-healing femoral fracture rat model
in the presence of a magnetic field. The biological fate of the
transplanted MSCs was observed using luciferase-based bioluminescence
imaging and we found that the number of MSC derived photons increased
from day one to day three and thereafter decreased over time. The
magnetic cell delivery system induced the accumulation of photons at
the fracture site, while also retaining higher photon intensity
from day three to week four. Furthermore, radiological and histological
findings suggested improved callus formation and endochondral ossification.
We therefore believe that this delivery system may be a promising
option for bone regeneration.