Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 99 - 99
1 Mar 2021
Procter P Hulsart-Billstrom G Insley G Pujari-Palmer M Wenner D Engqvist H Larsson S
Full Access

An ex vivo biomechanical test model for evaluating a novel bone adhesive has been developed. However, at day 1 in the in vivo pilot, high blood flow forced the study to halt until the solution presented here was developed. The profuse bleeding after bone core removal affected the bond strength and was reflected in the lower mean peak value 1.53N. After considering several options, we were successful in sealing the source of blood flow by pressing adhesive into place after bone core removal. After the initial adhesive had cured additional adhesive was used to secure the bone core in place. The animals were sacrificed after 24 h and a tensile test was undertaken on the bone core to failure. The ex vivo study produced mean peak tensile loads of 7.63N SD 2.39N (n=8, 4 rats 8 femurs). Whilst the mean peak tensile loads in the day 1 in vivo pilot were significantly lower 1.53N SD1.57 (n=8, 6 rats 8 femurs − 4 used for other tests). The subsequent layered adhesive bone cores showed a mean peak tensile force of 6.79N SD =3.13 (n=8, 4 rats 8 femurs). 7/8 failed at the bone to glue interface. This is the first successful demonstration of bonding bone in vivo for this class of adhesives. The development of a double adhesive method of fixing a bone core in the distal femur enabled mean peak tensile forces to be achieved in vivo at 24 hours that were comparable with the ex vivo results previously demonstrated. This method supports application in further animal series and over longer time scales. Biomaterials researchers that intend to use gel or paste like preparations in distal femur defects in the rat should be aware of the risks of biomaterial displacement by local blood flow