We aim to analyze the role of patient-related factors on the yield of progenitor cells in the
Abstract. Objectives.
Bone regeneration is pivotal for the healing of fractures. In case this process is disturbed a non-union can occur. This can be induced by environmental factors such as smoking, overloading etc. Co-morbidities such as diabetes, osteoporosis etc. may be more intrinsic factors besides other disturbances in the process. Those pathways negatively influence the bone regeneration process. Several intrinsic signal transduction pathways (WNT, BMP etc.) can be affected. Furthermore, on the transcriptional level, important mRNA expression can be obstructed by deregulated miRNA levels. For instance, several miRNAs have been shown to be upregulated during osteoporotic fractures. They are detrimental for osteogenesis as they block bone formation and accelerate bone resorption. Modulating those miRNAs may revert the physiological homeostasis. Indeed, physiological fracture healing has a typical miRNA signature. Besides using molecular pathways for possible treatment of non-union fractures, providing osteogenic cells is another solution. In 5 clinical cases with non-union fractures with defects larger than 10 cm, successful administration of a 3D printed PCL-TCP scaffold with autologous
The optimal treatment strategy for post-traumatic long bone non-unions is subject of an ongoing discussion. At the Maastricht University Medical Center (MUMC+) the induced membrane technique is used to treat post-traumatic long bone non-unions. This technique uses a multimodal treatment algorithm involving
Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading, shock absorption, lubrication, and proprioception. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible: only the meniscus tissue which is identified as unrepairable should be excised and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping, or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The features needed for a meniscal scaffold are: promotion of cell migration, it should be biomimetic and biocompatible, it should resist forces applied and transmitted by the knee, it should slowly biodegrade and should be easy to handle and implant. Several materials have been tested, that can be divided into synthetic and biological. The first have the advantage to be manufactured with the desired shapes and sizes and with precise porosity dimension and biomechanical characteristics. To date, the most common polymers are polylactic acid (PGA); poly-(L)-lactic acid (PLLA); poly- (lactic-co-glycolic acid) (PLGA); polyurethane (PU); polyester carbon and polycaprolactone (PCL). The possible complications, more common in synthetic than natural polymers are poor cell adhesion and the possibility of developing a foreign body reaction or aseptic inflammation, leading to alter the joint architecture and consequently to worsen the functional outcomes. The biological materials that have been used over time are the periosteal tissue, the perichondrium, the small intestine submucosa (SIS), acellular porcine meniscal tissue, bacterial cellulose. Although these have a very high biocompatibility, some components are not suitable for tissue engineering as their conformation and mechanical properties cannot be modified. Collagen or proteoglycans are excellent candidates for meniscal engineering, as they maintain a high biocompatibility, they allow for the modification of the porosity texture and size and the adaptation to the patient meniscus shape. On the other hand, they have poor biomechanical characteristics and a more rapid degradation rate, compared to others, which could interfere with the complete replacement by the host tissue. An interesting alternative is represented by hydrogel scaffolds. Their semi-liquid nature allows for the generation of scaffolds with very precise geometries obtained from diagnostic images (i.e. MRI). Promising results have been reported with alginate and polyvinyl alcohol (PVA). Furthermore, hydrogel scaffolds can be enriched with growth factors, platelet-rich plasma (PRP) and