Advertisement for orthosearch.org.uk
Results 1 - 20 of 1175
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 751 - 758
1 Jul 2024
Yaxier N Zhang Y Song J Ning B

Aims. Given the possible radiation damage and inaccuracy of radiological investigations, particularly in children, ultrasound and superb microvascular imaging (SMI) may offer alternative methods of evaluating new bone formation when limb lengthening is undertaken in paediatric patients. The aim of this study was to assess the use of ultrasound combined with SMI in monitoring new bone formation during limb lengthening in children. Methods. In this retrospective cohort study, ultrasound and radiograph examinations were performed every two weeks in 30 paediatric patients undergoing limb lengthening. Ultrasound was used to monitor new bone formation. The number of vertical vessels and the blood flow resistance index were compared with those from plain radiographs. Results. We categorized the new bone formation into three stages: stage I (early lengthening), in which there was no obvious callus formation on radiographs and ultrasound; stage II (lengthening), in which radiographs showed low-density callus formation with uneven distribution and three sub-stages could be identified on ultrasound: in Ia punctate callus was visible; in IIb there was linear callus formation which was not yet connected and in IIc there was continuous linear callus. In stage III (healing), the bone ends had united, the periosteum was intact, and the callus had disappeared, as confirmed on radiographs, indicating healed bone. A progressive increase in the number of vertical vessels was noted in the early stages, peaking during stages IIb and IIc, followed by a gradual decline (p < 0.001). Delayed healing involved patients with a prolonged stage IIa or those who regressed to stage IIa from stages IIb or IIc during lengthening. Conclusion. We found that the formation of new bone in paediatric patients undergoing limb lengthening could be reliably evaluated using ultrasound when combined with the radiological findings. This combination enabled an improved assessment of the prognosis, and adjustments to the lengthening protocol. While SMI offered additional insights into angiogenesis within the new bone, its role primarily contributed to the understanding of the microvascular environment rather than directly informing adjustments of treatment. Cite this article: Bone Joint J 2024;106-B(7):751–758


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 98 - 98
23 Feb 2023
Woodfield T Shum J Tredinnick S Gadomski B Fernandez J McGilvray K Seim H Nelson B Puttlitz C Easley J Hooper G
Full Access

Introduction: The mechanobiology and response of bone formation to strain under physiological loading is well established, however investigation into exceedingly soft scaffolds relative to cancellous bone is limited. In this study we designed and 3D printed mechanically-optimised low-stiffness implants, targeting specific strain ranges inducing bone formation and assessed their biological performance in a pre-clinical in vivo load-bearing tibial tuberosity advancement (TTA) model. The TTA model provides an attractive pre-clinical framework to investigate implant osseointegration within an uneven loading environment due to the dominating patellar tendon force. A knee finite element model from ovine CT data was developed to determine physiological target strains from simulated TTA surgery. We 3D printed low-stiffness Ti wedge osteotomy implants with homogeneous stiffness of 0.8 GPa (Ti1), 0.6 GPa (Ti2) and a locally-optimised design with a 0.3 GPa cortex and soft 0.1 GPa core (Ti3), for implantation in a 12-week ovine tibial advancement osteotomy (9mm). We quantitatively assessed bone fusion, bone area, mineral apposition rate and bone formation rate. Optimised Ti3 implants exhibited evenly high strains throughout, despite uneven wedge osteotomy loading. We demonstrated that higher strains above 3.75%, led to greater bone formation. Histomorphometry showed uniform bone ingrowthin optimised Ti3 compared to homogeneous designs (Ti1 and Ti2), and greater bone-implant contact. The greatest bone formation scores were seen in Ti3, followed by Ti2 and Ti1. Results from our study indicate lower stiffness and higher strain ranges than normally achieved in Ti scaffolds stimulate early bone formation. By accounting for loading environments through rational design, implants can be optimised to improve uniform osseointegration. Design and 3D printing of exceedingly soft titanium orthopaedic implants enhance strain induced bone formation and have significant importance in future implant design for knee, hip arthroplasty and treatment of large load-bearing bone defects


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 31 - 31
2 Jan 2024
Negri S Yea J Gomez-Salazar M Onggo S Li Z Thottappillil N Cherief M Xing X Qin Q Tower R Fan C Levi B James A
Full Access

Heterotopic ossification (HO) is defined as aberrant bone formation in extraskeletal locations. In this process, local stromal cells of mesenchymal origin abnormally differentiate, resulting in pathologic cartilage and bone matrix deposition. However, the specific cell type and mechanisms beyond this process are not well understood, in part due to the heterogeneity of progenitor cells involved. Here, a combination of single cell RNA sequencing (scRNA-Seq) and lineage tracing, defined the extent to which synovial / tendon sheath progenitor cells contribute to HO. For this purpose, a Tppp3 (tubulin polymerization-promoting protein family member 3) inducible reporter model was used, in combination with either Scx (Scleraxis) or Pdgfra (Platelet derived growth factor receptor alpha) reporter animals. Both arthroplasty-induced and tendon injury-mouse experimental HO models were utilized. ScRNA-Seq of tendon-induced traumatic HO suggested that Tppp3 is a progenitor cell marker for either osteochondral or tendon or cells. After HO induction, Tppp3 reporter+ cell population expanded in number and contributed to cartilage and bone formation in tendon and joint-associated HO. Using double reporter animals, we found that both Pdgfra+Tppp3+ and Pdgfra+Tppp3- progenitor cells produced HO-associated cartilage. Finally, the examination of human samples showed a significant population of TPPP3+ cells overlapping with osteogenic markers in areas of HO. Overall, these results provide novel observations that peritenon and synovial progenitor cells undergo abnormal osteochondral differentiation and contribute to heterotopic bone formation after trauma


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 17 - 17
14 Nov 2024
Kjærgaard K Ding M Mansourvar M
Full Access

Introduction. Experimental bone research often generates large amounts of histology and histomorphometry data, and the analysis of these data can be time-consuming and trivial. Machine learning offers a viable alternative to manual analysis for measuring e.g. bone volume versus total volume. The objective was to develop a neural network for image segmentation, and to assess the accuracy of this network when applied to ectopic bone formation samples compared to a ground truth. Method. Thirteen tissue slides totaling 114 megapixels of ectopic bone formation were selected for model building. Slides were split into training, validation, and test data, with the test data reserved and only used for the final model assessment. We developed a neural network resembling U-Net that takes 512×512 pixel tiles. To improve model robustness, images were augmented online during training. The network was trained for 3 days on a NVidia Tesla K80 provided by a free online learning platform against ground truth masks annotated by an experienced researcher. Result. During training, the validation accuracy improved and stabilised at approx. 95%. The test accuracy was 96.1 %. Conclusion. Most experiments using ectopic bone formation will yield an inter-observer or inter-method variance of far more than 5%, so the current approach may be a valid and feasible technique for automated image segmentation for large datasets. More data or a consensus-based ground truth may improve training stability and validation accuracy. The code and data of this project are available upon request and will be available online as part of our publication


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 49 - 49
14 Nov 2024
Chen YS Lian WS Lin Y Wang F
Full Access

Introduction. Promoting bone mass homeostasis keeps skeleton away from osteoporosis. a-Ketoglutarate (a-KG) is an indispensable intermediate of tricarboxylic acid cycle (TCA) process for cellular energy production. a-KG mitigates cellular senescence, tissue degeneration, and oxidative stress. We investigated whether a-KG affected osteoblast activity or osteoporosis development. Method. Serum and bone specimens were biopsied from 26 patients with osteoporosis or 24 patients without osteoporosis who required spinal surgery. Ovariectomized or aged mice were fed 0.25% or 0.75% a-KG in drinking water for 8 – 12 weeks ad libitum. Bone mineral density, trabecular/cortical bone microarchitecture, mechanical strength, bone formation, and osteoclastic erosion were investigated using mCT, material testing device, in vivo calcein labelling, and TRAP histochemical staining. Serum a-KG, osteocalcin, and TRAP5b levels were quantified using ELISA kits. Bone-marrow mesenchymal cells and macrophages were incubated osteogenic and osteoclastogenic media. Histone H3K27me3 levels and enrichment were investigated using immunoblotting and chromatin precipitation-PCR. Result. Serum a-KG levels in patients with osteoporosis were less than controls; and were correlated with T-scores of hips (R2 = 0.6471, P < 0.0001) and lumbar spine (R2 = 0.7235, P < 0.001) in osteoporosis (AUC = 0.9941, P < 0.001). a-KG supplement compromised a plethora of osteoporosis signs in ovariectomized or aged mice, including bone mass loss, trabecular bone microarchitecture deterioration, and mechanical strength loss. It elevated serum osteocalcin levels and decreased serum TRAP5b. a-KG preserved caclein-labelling bone formation and repressed osteoclast resorption. It reversed osteogenic differentiation of bone-marrow stromal cells and reduced osteoclast formation in ovariectomized mice. Mechanically, a-KG attenuated H3K27 hypermethylation and Runx2 transcription repression, improving mineralized matrix production in osteogenic cells. Conclusion. Decreased serum a-KG is correlated with human and murine osteoporosis. a-KG reverses bone loss by repressing histone methylation in osteoblasts. This study highlighted a-KG supplement as a new biochemical option for protecting osteoporosis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 99 - 99
23 Feb 2023
Woodfield T Shum J Linkhorn W Gadomski B Puttlitz C McGilvray K Seim H Nelson B Easley J Hooper G
Full Access

Polyetheretherketone (PEEK) interbody fusion cages combined with autologous bone graft is the current clinical gold standard treatment for spinal fusion, however, bone graft harvest increases surgical time, risk of infection and chronic pain. We describe novel low-stiffness 3D Printed titanium interbody cages without autologous bone graft and assessed their biological performance in a pre-clinical in vivo interbody fusion model in comparison to the gold standard, PEEK with graft. Titanium interbody spacers were 3D Printed with a microporous (Ti1: <1000μm) and macroporous (Ti2: >1000μm) design. Both Ti1 and Ti2 had an identical elastic modulus (stiffness), and were similar to the elastic modulus of PEEK. Interbody fusion was performed on L2-L3 and L4-L5 vertebral levels in 24 skeletally mature sheep using Ti1 or Ti2 spacers, or a PEEK spacer filled with iliac crest autograft, and assessed at 8 and 16 weeks. We quantitatively assessed bone fusion, bone area, mineral apposition rate and bone formation rate. Functional spinal units were biomechanically tested to analyse range of motion, neutral zone, and stiffness. Results: Bone formation in macroporous Ti2 was significantly greater than microporous Ti1 treatments (p=.006). Fusion scores for Ti2 and PEEK demonstrated greater rates of bone formation from 8 to 16 weeks, with bridging rates of 100% for Ti2 at 16 weeks compared to just 88% for PEEK and 50% for Ti1. Biomechanical outcomes significantly improved at 16 versus 8 weeks, with no significant differences between Ti and PEEK with graft. This study demonstrated that macroporous 3D Printed Ti spacers are able to achieve fixation and arthrodesis with complete bone fusion by 16 weeks without the need for bone graft. These significant data indicate that low-modulus 3D Printed titanium interbody cages have similar performance to autograft-filled PEEK, and could be reliably used in spinal fusion avoiding the complications of bone graft harvesting


Bone & Joint Research
Vol. 10, Issue 12 | Pages 767 - 779
8 Dec 2021
Li Y Yang Y Wang M Zhang X Bai S Lu X Li Y Waldorff EI Zhang N Lee WY Li G

Aims. Distraction osteogenesis (DO) is a useful orthopaedic procedure employed to lengthen and reshape bones by stimulating bone formation through controlled slow stretching force. Despite its promising applications, difficulties are still encountered. Our previous study demonstrated that pulsed electromagnetic field (PEMF) treatment significantly enhances bone mineralization and neovascularization, suggesting its potential application. The current study compared a new, high slew rate (HSR) PEMF signal, with different treatment durations, with the standard Food and Drug Administration (FDA)-approved signal, to determine if HSR PEMF is a better alternative for bone formation augmentation. Methods. The effects of a HSR PEMF signal with three daily treatment durations (0.5, one, and three hours/day) were investigated in an established rat DO model with comparison of an FDA-approved classic signal (three hrs/day). PEMF treatments were applied to the rats daily for 35 days, starting from the distraction phase until termination. Radiography, micro-CT (μCT), biomechanical tests, and histological examinations were employed to evaluate the quality of bone formation. Results. All rats tolerated the treatment well and no obvious adverse effects were found. By comparison, the HSR signal (three hrs/day) treatment group achieved the best healing outcome, in that endochondral ossification and bone consolidation were enhanced. In addition, HSR signal treatment (one one hr/day) had similar effects to treatment using the classic signal (three three hrs/day), indicating that treatment duration could be significantly shortened with the HSR signal. Conclusion. HSR signal may significantly enhance bone formation and shorten daily treatment duration in DO, making it a potential candidate for a new clinical protocol for patients undergoing DO treatments. Cite this article: Bone Joint Res 2021;10(12):767–779


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 85 - 85
1 Dec 2018
Ferguson J Diefenbeck M McNally M
Full Access

Aim. Antibiotic-loaded biomaterials are often used in dead space management after excision of infected bone. This study assessed the chronological progression of new bone formation in infected defects, filled only with an absorbable, osteoconductive bone void filler with Gentamicin (1). Method. 163 patients were treated for osteomyelitis or infected fractures with a single-stage excision, implantation of antibiotic carrier, stabilisation and wound closure. All had Cierny & Mader Type III (n=128) or Type IV (n=35) infection. No bone grafting was performed in any patient. Patients were followed up for a minimum of 12 months (mean 21.4 months; 12–56). Bone void filling was assessed on serial digitised, standardized radiographs taken immediately after surgery, at 6 weeks, 3, 6 and 12 months and then yearly. Data on defect size, location, degree of void filling, quality of the bone-biomaterial interface and material leakage were collected. Bone formation was calculated at final follow-up, as a percentage of initial defect volume, by determining the bone area on AP and lateral radiographs to the nearest 5%. Results. 138 patients had adequate radiographs for assessment. Infection was eradicated in 95.7%. 2.5% of patients suffered a fracture during follow-up. Overall, bone formation was good (mean 73.8% defect filling), with one quarter of patients having complete defect filling and 87% having more than 50% of the defect healed. Bone formed better in metaphyseal defects compared to diaphyseal defects (mean 79% filling vs 66%; p<0.02). Good interdigitation of the biomaterial with the host bone, seen on the initial radiograph, was associated with more bone formation (77% vs 69%; p=0.021). Leakage of the biomaterial out of the defect reduced mean bone formation from 77% to 62% (p=0.006). 38 cases had radiographs more than 2 years after implantation. In 24 (63.2%), bone formation continued to increase after the first year radiograph. Conclusion. This biomaterial was effective in allowing significant amounts of bone to form in the defect. This removed the need for bone grafting in this series, with a low risk of fracture or recurrent infection. However, bone formation is affected by the site of the lesion and the adequacy of filling at surgery. It is important to achieve good contact between the bone surface and the biomaterial at operation. Bone formation is slow and progresses for at least 2 years after implantation, in two thirds of patients


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 5 - 5
1 Dec 2021
Alagboso F Mannala G Steinmann S Docheva D Rupp M Brochhausen C Alt V
Full Access

Aim. Bone regeneration following the treatment of Staphylococcal bone infection or osteomyelitis is challenging due to the ability of Staphylococcus aureus to invade and persist within bone cells, which could possibly lead to antimicrobial tolerance and incessant bone destruction. Here, we investigated the influence of Staphylococcal bone infection on osteoblasts metabolism and function, with the underlying goal of determining whether Staphylococcus aureus-infected osteoblasts retain their ability to produce extracellular mineralized organic matrix after antibiotic treatment. Method. Using our in vitro infection model, human osteoblasts-like Saos-2 cells were infected with high-grade Staphylococcus aureus EDCC 5055 strain, and then treated with 8 µg/ml rifampicin and osteogenic stimulators up to 21-days. Results. Immunofluorescence and transmission electron microscopic (TEM) imaging demonstrated the presence of intracellular bacteria within the infected osteoblasts as early as 2 hours post-infection. TEM micrographs revealed intact intracellular bacteria with dividing septa indicative of active replication. The infected osteoblasts showed significant amounts of intracellular bacteria colonies and alteration in metabolic activity compared to the uninfected osteoblasts (p≤0.001). Treatment of S. aureus-infected osteoblasts with a single dose of 8 µg/ml rifampicin sufficiently restored the metabolic activity comparative to the uninfected groups. Alizarin red staining and quantification of the rifampicin-treated infected osteoblasts revealed significantly lower amount of mineralized extracellular matrix after 7-days osteogenesis (p<0.05). Interestingly, prolonged osteogenic stimulation and rifampicin-treatment up to 21 days improved the extracellular matrix mineralization level comparable to the rifampicin-treated uninfected group. However, the untreated (native) osteoblasts showed significantly more quantity of mineral deposits (p≤0.001). Ultrastructural analysis of the rifampicin-treated infected osteoblasts at 21-days osteogenesis revealed active osteoblasts and newly differentiated osteocytes, with densely distributed calcium crystal deposits within the extracellular organic matrix. Moreover, residual colony of dead bacteria bodies and empty vacuoles of the fully degraded bacteria embedded within the mineralized extracellular matrix. Gene expression level of prominent bone formation markers, namely RUNX2, COL1A1, ALPL, BMP-2, SPARC, BGLAP, OPG/RANKL showed no significant difference between the infected and uninfected osteoblast at 21-days of osteogenesis. Conclusions. Staphylococcus aureus bone infection can drastically impair osteoblasts metabolism and function. However, treatment with potent intracellular penetrating antibiotics, namely rifampicin restored the metabolic and bone formation activity of surviving osteoblasts. Delay in early osteogenesis caused by the bacterial infection was significantly improved over time after successful intracellular bacteria eradication


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 96 - 96
2 Jan 2024
Al-Sharabi N
Full Access

Growing evidence has suggested that paracrine mechanisms of Mesenchymal stem cell (MSC) may be involved in the underlying mechanism of MSC after transplantation, and extracellular vesicles (EVs) are an important component of this paracrine role. The aim of this study was to investigate the in vitro osteogenic effects of EVs derived from undifferentiated mesenchymal stem cells and from chemically induced to differentiate into osteogenic cells for 7 days. Further, the osteoinductive potential of EVs for bone regeneration in rat calvarial defects was assessed. We could isolate and characterize EVs from naïve and osteogenic-induced MSCs. Proteomic analysis revealed that EVs contained distinct protein profiles, with Osteo-EVs having more differentially expressed proteins with osteogenic properties. EVs were found to enhance the proliferation and migration of cultured MSC. In addition, the study found that Osteo-EVs/MEM combination scaffolds could enhance greater bone formation after 4 weeks as compared to native MEM loaded with serum-free media. The study suggests that EVs derived from chemically osteogenic-induced MSCs for 7 days can significantly enhance both the osteogenic differentiation activity of cultured hMSCs and the osteoinductivity of MEM scaffolds. The results indicate that Osteo-MSC-secreted nanocarriers-EVs combined with MEM scaffolds can be used for repairing bone defects


The Journal of Bone & Joint Surgery British Volume
Vol. 47-B, Issue 1 | Pages 157 - 180
1 Feb 1965
Lee WR Marshall JH Sissons HA

1. In two dogs, approximately one to two years and three to four months of age, an experimental comparison was made between the calcium accretion rate as defined by the Bauer-Carlsson-Lindquist equation, and the bone formation rate determined by double tetracycline labelling. 2. The overall calcium accretion rate was determined from the specific activity of the blood plasma, and the urinary and faecal excretion of isotope, following an intravenous tracer dose of Ca. 45. A time of five days after injection was used for the calculation of accretion rates, but data for shorter times of calculation are included. 3. Local accretion rates were obtained for different parts of the skeleton by determining the specific activities of bone samples at the end of the experiment. 4. The amount of isotope the uptake of which was not related to new bone formation (the diffuse component) was determined autoradiographically. 5. Local values for appositional growth rate and bone formation rate were obtained, using sections of undecalcified bone specimens, by measuring the linear separation between two tetracycline bone markers and the area of new bone enclosed by them. 6. In the older dog, the measurements for cortical bone showed that the accretion rate was two to three times as great as the bone formation rate: the observed diffuse component was sufficient to account for the greater part of this difference. Measurement of the bone formation rate for cancellous bone presented difficulties, but the approximate values obtained suggested that the accretion rate and the bone formation rate were of about the same order for this tissue. 7. In the younger dog, the bone formation rate could be determined only in cortical bone: at the sites studied, the values for the accretion rate and the bone formation rate did not differ by more than 20 per cent. It is suggested that this is due partly to the low specific activity of the diffuse component in this young animal, and partly to the relatively large amounts of new bone formed during the period of the experiment. 8. Despite the important differences between the rates of calcium accretion and bone formation that were found to exist in regions where there was only a small amount of new bone formation, there was a strong correlation between the two rates. The value of the accretion rate as a parameter of bone metabolism is clear


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 75 - 75
1 Nov 2018
Hoey D
Full Access

Osteoporosis affects millions globally and current anti-catabolic treatments are limited by significant side-effects. Osteoporosis arises when skeletal stem cells (SSC) no longer sufficiently replenish osteoblasts, leading to net bone loss. A key regulator of SSC behaviour is physical loading, yet the mechanisms by which SSCs sense and respond to changes in their mechanical environment are virtually unknown. Primary cilia are nearly ubiquitous ‘antennae-like’ cellular organelles that have very recently emerged as extracellular chemo/mechano-sensors and thus, are strong candidates to play an important role in regulating SSC responses in bone. This paper will demonstrate that the SSC primary cilium plays an important role in loading-induced bone formation via initial chemosensation and transduction of the potent chemokine TGFβ1 regulating SSC recruitment to the bone surface and secondly it will be shown that the primary cilium is a cAMP responsive mechanosensor directly regulating SSC mechanotransduction via localisation of adenylyl cyclase 6 to the ciliary microdomain. Finally, it will be shown that targeting the cilium therapeutically can be an effective approach to enhance both biochemical and biophysically induced SSC osteogenesis contributing to bone formation, demonstrating a novel anabolic therapy for bone loss diseases such as osteoporosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 10 - 10
1 Sep 2012
Husseini A St-Arnaud R
Full Access

Purpose. Vitamin D is a key regulator of bone homeostasis. The enzyme CYP24A1 is responsible for transforming vitamin D into 24,25(OH)2vitD. The putative biological activity of 24,25(OH)2vitD remains unclear. Previous studies showed an increase in the circulating levels of this metabolite following a fracture in chicks. Our laboratory has engineered a mouse model deficient for the Cyp24a1 gene for studying the role of 24,25(OH)2vitD. We set out to study the role of 24,25(OH)2vitD in endochondral and intramembranous bone formation in fracture repair in this mouse model based on the results of the chick fracture repair study. Method. Wild-type and mutant Cyp24a1 gene deficient mice were subjected to two different surgical procedures to simulate bone development and fracture repair. To mimic endochondral ossification, we devised a modified technique to perform intramedullary nailing of a mouse tibia followed by an induced fracture. To evaluate intramembranous ossification, we applied distraction osteogenesis to a mouse tibia using a mini Ilizarov external fixator apparatus. Histomorphometric parameters and gene expression differences in fracture repair between the mutant mice and the wild-type controls were measured using micro computed tomography, histology and reverse-transcription quantitative PCR (RT-qPCR) respectively. Results. Quantitative histomorphometric results showed a delay in endochondral fracture repair in the mutant mice calluses as compared to the wild-type mice calluses. In the same model, gene expression of type X collagen in the callus was higher in the wild-type mice. These significant differences were fully rescued by injecting the mutant mice with exogenous 24,25(OH)2vitD. In the intramembranous bone formation model, we found a trend towards reduced bone formation in the gap created by the distraction process in the mutant mice as compared to the wild-type mice. However, the differences did not reach statistical significance. Conclusion. Our results support a role for 24,25(OH)2vitD in fracture repair which is more dominant in a chondrocyte-mediated bone formation pathway like endochondral ossification. Although our results did not reach statistical significance in the intramembranous ossification model, the observed trend suggests a potential role as well. Further study of the role of 24,25(OH)2vitD in bone healing has the potential to support novel approaches in accelerating bone formation and fracture repair


Bone & Joint Research
Vol. 5, Issue 10 | Pages 500 - 511
1 Oct 2016
Raina DB Gupta A Petersen MM Hettwer W McNally M Tägil M Zheng M Kumar A Lidgren L

Objectives. We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. Materials and Methods. We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy. Results. C2C12 cells differentiated into osteoblast-like cells expressing prominent bone markers after seeding on the biomaterial. The conditioned media of the ROS 17/2.8 contained bone morphogenetic protein-2 (BMP-2 8.4 ng/mg, standard deviation (. sd. ) 0.8) and BMP-7 (50.6 ng/mg, . sd. 2.2). In vitro, this secretome induced differentiation of skeletal muscle cells L6 towards an osteogenic lineage. Conclusion. Extra cellular matrix proteins and growth factors leaking from a bone cavity, along with a ceramic biomaterial, can synergistically enhance the process of ectopic ossification. The overlaying muscle acts as an osteoinductive niche, and provides the required cells for bone formation. Cite this article: D. B. Raina, A. Gupta, M. M. Petersen, W. Hettwer, M. McNally, M. Tägil, M-H. Zheng, A. Kumar, L. Lidgren. Muscle as an osteoinductive niche for local bone formation with the use of a biphasic calcium sulphate/hydroxyapatite biomaterial. Bone Joint Res 2016;5:500–511. DOI: 10.1302/2046-3758.510.BJR-2016-0133.R1


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 131 - 131
1 May 2012
Liu R Peacock L Mikulec K Morse A Schindeler A Little D
Full Access

Bone morphogenetic proteins (BMPs) are able to induce osteogenic differentiation in many cells, including muscle cells. However, the actual contribution of muscle cells to bone formation and repair is unclear. Our objective was to examine the capacity of myogenic cells to contribute to BMP-induced ectopic bone formation and fracture repair. Osteogenic gene expression was measured by quantitative PCR in osteoprogenitors, myoblasts, and fibroblasts following BMP-2 treatment. The MyoD-Cre x ROSA26R and MyoD-Cre x Z/AP mouse strains were used to track the fate of MyoD+ cells in vivo. In these double-transgenic mice, MyoD+ progenitors undergo a permanent recombination event to induce reporter gene expression. Ectopic bone was produced by the intramuscular implantation of BMP-7. Closed tibial fractures and open tibial fractures with periosteal stripping were also performed. Cellular contribution was tracked at one, two and three week time points by histological staining. Osteoprogenitors and myoblasts exhibited comparable expression of early and late bone markers; in contrast bone marker expression was considerably less in fibroblasts. The sensitivity of cells to BMP-2 correlated with the expression of BMP receptor-1a (Bmpr1a). Pilot experiments using the MyoD-Cre x Rosa26R mice identified a contribution by MyoD expressing cells in BMP-induced ectopic bone formation. However, false positive LacZ staining in osteoclasts led us to seek alternative systems such as the MyoD-cre x Z/AP mice that have negligible background staining. Initially, a minor contribution from MyoD expressing cells was noted in the ectopic bones in the MyoD-cre x Z/AP mice, but without false positive osteoclast staining. Soft tissue trauma usually precedes the formation of ectopic bone. Hence, to mimic the clinical condition more precisely, physical injury to the muscle was performed. Traumatising the muscle two days prior to BMP-7 implantation: (1) induced MyoD expression in quiescent satellite cells; (2) increased ectopic bone formation; and (3) greatly enhanced the number of MyoD positive cells in the ectopic bone. In open tibial fractures the majority of the initial callus was MyoD+ indicating a significant contribution by myogenic cells. In contrast, closed fractures with the periosteum intact had a negligible myogenic contribution. Myoblasts but not fibroblasts were highly responsive to BMP stimulation and this was associated with BMP receptor expression. Our transgenic mouse models demonstrate for the first time that muscle progenitors can significantly contribute to ectopic bone formation and fracture repair. This may have translational applications for clinical orthopaedic therapies


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 78 - 78
1 Nov 2021
Jolic M Shah FA Omar O Emanuelsson L Norlindh B Engqvist H Engstrand T Palmquist A Thomsen P
Full Access

Introduction and Objective. Calcium phosphates are among the most commonly used bone graft substitute materials. Compositions containing predominantly monetite (∼84.7%) with smaller additions of beta-tricalcium phosphate (β-TCP; ∼8.3%) and calcium pyrophosphate (Ca-PP; ∼6.8%) have previously been demonstrated to exhibit osteoinductive properties. Such a multi-component calcium phosphate bioceramic was fashioned in the form of hollowed-out, dome-shaped devices (15 mm diameter, 4 mm height), each reinforced with a 3D printed Ti6Al4V ELI frame. With the aim to induce bone formation beyond the skeletal envelope, these devices were investigated in vivo using a sheep (Ovis aries) occipital bone model. Materials and Methods. The bioceramic composition was prepared from a mixture of β-TCP/dicalcium pyrophosphate and monocalcium phosphate monohydrate powders mixed with glycerol. The Ti6Al4V ELI frame was positioned into a dome-shaped mould and bioceramic paste was poured over the frame and allowed to set, in sterile water, prior to removal from the mould. In adult female sheep (n=7), the devices were positioned directly over the bone and stabilised using self-drilling screws. After 52 weeks, the devices were retrieved, resin embedded, and used for X-ray micro-computed tomography (micro-CT), histology, backscattered electron scanning electron microscopy (BSE-SEM), energy dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). Results. The bioceramic composition (Ca/P: ∼0.85 at. %) transforms to carbonated apatite (Ca/P: ∼1.2 at. %, Mg/Ca: ∼0.03 at. %), in vivo, largely at the expense of monetite and Ca-PP whereas β-TCP remains detectable. Discrete particles of Ca-PP are identified by correlative BSE-SEM and micro-Raman spectroscopy. Together with chemical transformation, physical degradation is evident within the bulk of the bioceramic. Beyond the confines of the skeletal envelope, de novo bone occupies ∼53–84% (∼73 ± 11%; mean ± standard deviation) of the hollowed-out space. Low porosity and the arrangement of remodelled bone into a concentric lamellar pattern is indicative of cortical-like structure. Such areas are typically surrounded by yet unremodelled, and microstructurally disordered, woven bone that stains intensely with blue cationic dyes, owing to relatively higher acid phosphate content. This pattern indicates a recurring sequence of woven bone formation followed by remodelling. Bone formation is also visible within the bioceramic. Recently remodelled and areas of ongoing remodelling are identified by relatively lower mineral density than the surrounding woven bone. Dendritic extensions of osteocytes appear to extend into the bioceramic surface. Both micro-Raman spectroscopy and FTIR reveal little, if any, detectable difference between the mineral and organic phases of the extracellular matrix, between de novo and native bone. Conclusions. The bioceramic composition undergoes physical degradation, but remains largely intact by 52 weeks in vivo, and only partially transforms to carbonated apatite. In addition to very high bone volume within the hollowed-out bioceramic device, the overall composition and microstructure of de novo bone are similar to native bone. Notably, the mineral phase of bone in response to, and in direct contact with the β-TCP, monetite, and Ca-PP, remains exclusively carbonated apatite


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 92 - 92
1 Jul 2014
Wong H Chu P Cheung K Luk K Yeung K
Full Access

Summary. A promising approach to stimulate in vivo bone formation by using our newly developed magnesium-based bone substitutes, which can be an alternative to treat the patients with bone loss in addition to the anticatabolic drugs and growth factors. Introduction. Bone impairment arising from osteoporosis as well as other pathological diseases is a major health problem. Anti-catabolic drugs such as bisphosphonates and other biological agents such as bone morphogenetic proteins and insulin-like growth factor can theoretically apply to stimulate bone formation. However, the formation of more brittle bone and uncontrolled release rate are still a challenge nowadays. Hence, we propose to stimulate bone formation by using a newly developed magnesium-based bone substitute. Indeed, the presence of magnesium ions can stimulate bone growth and healing by enhancing osteoblastic activity. This study aims to investigate the mechanical, in vitro and in vivo properties of this novel bone substitute. Methods. The bone substitutes were prepared by incorporating 9% TMSPM-treated Mg granules (i.e. 45μm & 150μm) into biodegradable polymer, polycaprolactone (PCL). The TMSPM silane-coupling agent treatment was used to protect the Mg particles from rapid degradation. Compression test was performed to study the mechanical properties of the bone substitute by using the MTS machine. A 7-day stimulated body fluid (SBF) immersion test was conducted to test their bioactivity. The surface composition was checked by energy dispersive x-ray spectroscopy (EDX) after immersion. The cytocompatibility and osteogenic differentiation properties of the bone substitutes were studied by MTT, ALP assays and qRT-PCR with the use of MC3T3-E1 pre-osteoblasts. Finally, the in vivo response of the bone substitutes was evaluated by using rat model of 2 months. Micro-CT was used to monitor the volume change of bone formation. Pure PCL was used as the control. Results. At least 36% higher compressive modulus was found on the new bone substitutes as compared to pure PCL. Calcium and phosphate deposition were detected on the Mg bone substitutes but not on pure PCL after 7-day SBF immersion. Significantly higher cell viabilities and specific ALP activities were found on the new bone substitutes as compared to pure PCL. Additionally, significantly higher ALP, Type I collagen, osteopontin and Runx2 expressions were found on the Mg-based substitutes at different time points. Finally, more than 15% new bone was found on the Mg bone substitutes after 1 week of post-operation and 40% higher after 3 weeks. Discussion/Conclusion. The increased compressive moduli of the Mg-based bone substitutes suggested that the mechanical property of PCL could be enhanced by incorporating Mg granules and the values fall within the range of cancellous bone (50 – 800 MPa). Moreover, the detection of the calcium and phosphate on the bone substitutes showed that they might possess osteoinductivity. The in vitro study showed the enhanced cytocompatibility and osteogenic differentiation properties of the new bone substitutes, which was possibly due to the effect of Mg ions release. Our previous study showed that only a low level of Mg ions (i.e. 50ppm) is able to stimulate the growth and differentiation of osteoblasts. Hence, this suggested the importance of controlling the release of Mg ions. This also explained why more new bone formation was found on the new bone substitutes than pure PCL during animal implantation. Hence, all the data presented here suggested our new bone substitutes maybe a potential candidate to stimulate new bone formation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 22 - 22
1 Aug 2012
Coathup M Lo W Edwards T Blunn G
Full Access

Introduction. This study investigated the binding agent Calcium/Sodium Alginate fibre gel and the addition of autogenic bone marrow aspirate (BMA) on bone growth into a porous HA scaffold implanted in an ovine femoral condyle critical-sized defect. Our hypothesis was that Alginate fibre gel would have no negative effect on bone formation and osteoconduction within the scaffold and that BMA would augment the incorporation of the graft with the surrounding bone at 6 and 12 weeks post implantation. Methods. 24, 8mm x 15mm defects were filled with either porous HA granules, porous HA granules + Alginate fibre gel (HA putty) or porous HA granules + Alginate fibre gel + BMA (HA putty +BMA) and remained in vivo for 6 and 12 weeks (n=4). 1ml of bone marrow aspirate per cm3 of graft was used. Image analysis quantified bone apposition rates, bone ingrowth, bone-implant contact and quantity of graft. Mann Whitney U tests were used for statistical analysis where p<0.05 was considered significant. Results. Highest bone formation were measured in the 12 week HA putty+BMA group (1.57±0.24(micromillimetres/day). HA granules at 12 weeks encouraged the greatest increase in bone formation (33.56±3.53%). Smaller amounts of bone was measured in the 6 week HA putty+BMA group (8.57±2.86%). Bone formation in the HA group at 12 weeks was significantly higher when compared with the HA putty (p= 0.043) and the HA putty+BMA group (p= 0.043). At both the 6 and 12 week time point, highest bone-implant contact was seen in the HA granules group (59.34±10.89% and 72.65±3.38% respectively) when compared with both the HA putty (p=0.018) and HA putty+BMA (p=0.047). Results showed no significant difference in the amount of implant remaining when each group was compared. Conclusions. Results from this study showed that the inclusion of BMA did not augment bone growth to the scaffold or increase its osteoconductive capacity when combined with Calcium/Sodium Alginate fibre gel. Further research is necessary to optimise Calcium/Sodium Alginate fibre gel when used to bind HA granules and to investigate the effect of BMA with this type of HA alone


Summary Statement. The present study demonstrates the beneficial effects of strontium (Sr) modified calcium phosphate cement to improve new bone formation in a metaphyseal osteoporotic fracture defects in rats compared to calcium phosphate cement and empty defects. Keywords: strontium, fracture, calcium phosphate, bone formation. Introduction. Impaired fracture healing with subsequent implant failure is a dramatic problem in osteoporotic fractures. Biomaterials are of interest to stimulate fracture healing in osteoporotic defects and the objective of the current study is to investigate the effects of Strontium modified calcium phosphate cement (SrCPC) in a critical-size metaphyseal fracture defect of osteoporotic rats compared to calcium phosphate (CPC) and empty defect control group. Methods. 45 female Sprague-Dawley rats were randomized into 3 groups: SrCPC, CPC and empty defect (n=15 for each). A combinatorial approach of multi-deficiency diet for 3 months after bilateral ovariectomy was used for induction of osteoporosis. Left femur of all animals underwent a 4mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with CPC or SrCPC and internally stabilised with a T shaped mini-plate. Empty defect served as a control. After 6 weeks femora were harvested followed by histological, histomorphometrical, immunohistochemical (bone-morphogenic protein 2, osteocalcin and osteoprotegerin), and molecular biology analysis (alkaline phosphatase, collagen10a1 and osteocalcin) to demonstrate the effects of the biomaterials on new bone formation. Time of flight secondary ion mass spectrometry (TOF-SIMS) technology was used to assess the distribution of released strontium ions and calcium appearance of newly formed bone. Results. Histomorphometric analysis showed a statistically significant increase in the bone formation at the tissue-implant interface in the SrCPC group (p<0.001). A statistically significantly more cartilage and unmineralised bone formation was also seen in the SrCPC group in comparision to the CPC group alone (p<0.05) and also to the empty defect (p<0.05) in the former fracture defect zone. These data were confirmed by the immunohistochemistry results which revealed an increase in bone-morphogenic protein 2, osteocalcin and osteoprotegerin and an increase in expression of genes responsible for bone formation viz. alkaline phosphatase, collagen10a1 and osteocalcin. TOF-SIMs analysis showed a higher release of Sr from the SrCPC into the interface region and related to a higher calcium content in this area compared to CPC. Discussion/Conclusion. SrCPC treatment showed enhanced new bone formation in a metaphyseal osteoporotic fracture defect of rats after 6 weeks compared to CPC-filled and empty defects in histomorphometry, immunochemistry and gene expression analysis. Strontium ranelate is a well-known anti-osteoporotic drug increasing bone formation and reducing bone resorption. As revealed by TOF-SIMS release of Sr out of the the SrCPC cement is most likely attributable for new bone formation. Therefore, Sr seems to be a good candidate not only for systemic treatment in osteoporosis but also in Sr-modification of biomaterials for local stimulation of new bone formation in osteoporotic fracture defects


Bone & Joint Research
Vol. 1, Issue 6 | Pages 125 - 130
1 Jun 2012
Bøe BG Støen RØ Solberg LB Reinholt FP Ellingsen JE Nordsletten L

Objectives. An experimental rabbit model was used to test the null hypothesis, that there is no difference in new bone formation around uncoated titanium discs compared with coated titanium discs when implanted into the muscles of rabbits. Methods. A total of three titanium discs with different surface and coating (1, porous coating; 2, porous coating + Bonemaster (Biomet); and 3, porous coating + plasma-sprayed hydroxyapatite) were implanted in 12 female rabbits. Six animals were killed after six weeks and the remaining six were killed after 12 weeks. The implants with surrounding tissues were embedded in methyl methacrylate and grinded sections were stained with Masson-Goldners trichrome and examined by light microscopy of coded sections. Results. Small amounts of bone were observed scattered along the surface of five of the 12 implants coated with porous titanium, and around one out of 12 porous coated surfaces with Bonemaster. No bone formation could be detected around porous coated implants with plasma-sprayed hydroxyapatite. Conclusion. Porous titanium coating is to some degree osteoinductive in muscles