Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 163 - 163
1 Sep 2012
Albers C Hofstetter W Siebenrock K Landmann R Klenke F
Full Access

Introduction. Infection of endoprostheses is a serious complication in orthopedic surgery. As silver is known for its antibactierial effects, silver-coated endoprostheses have gained increased attention to decrease infection rates. However, cytotoxic effects of silver on bone cells have not been investigated in detail. We aimed to investigate whether silver nano-/microparticles and ionic silver exert cytotoxic effects on osteoblasts and osteoclasts in vitro and to correlate potential effects with the antibacterial effect on Staph. epidermidis. Methods. Murine osteoclasts (OC) and murine osteoblasts (OB) were treated with silver particles (avg. sizes: 50nm, 3μm, 30μm, 8μg/ml–500μg/ml) and Ag+NO3- (0.5μg/ml–500μg/ml). Silver treatment started on day 3 to prevent interference with cell adhesion. XTT assays were performed to assess cell viability. Tartrate resistant acidic phosphatase (TRAP) activity and alkaline phosphatase (ALP) activity served as measures for OC and OB differentiation, respectively. The release of silver ions from silver particles was quantified with atomic emission spectometry (AES). Titanium particles (avg. sizes: 50nm and 30μm) were used as controls to investigate whether potential silver effects were particle- or ion-mediated. The antimicrobial activity of silver ions and particles was tested with Staph. epidermidis agar inhibition assays. Results. Ionic silver had the strongest impact on cell differentiation and viability of OC and OB (OC differentiation: mean IC50 = 5 μg/ml, OC viability: mean IC50 = 14 μg/ml, OB differentiation: mean IC50 = 1 μg/ml, OB viability: mean IC50 = 1 μg/ml). Silver nanoparticles decreased cell differentiation and viability in a dose dependent manner (OC differentiation: mean IC50 = 5μg/ml, OC viability: mean IC50 = 14μg/ml, OB differentiation: mean IC50 = 1μg/ml, OB viability: mean IC50 = 1μg/ml). Silver microparticles as well as titanium nano- and microparticles had no effect on cell differentiation and viability. AES showed a size and dose dependent release of silver ions from silver nano- and microparticles. Agar inhibition assays showed a dose correlation of the antibacterial effect of silver with the cytotoxic effects on OB and OC. Conclusion. Silver nanoparticles and silver ions exert dose-dependent cytotoxic effects on OB and OC in vitro resulting in a severe alteration of cell differentiation and viability. The effect of silver on OB and OC seems to be mediated primarily by silver ions and correlates with the substance's antibacterial effects. The cytotoxicity of silver nanoparticles is mediated primarily by the size-dependent liberation of silver ions. Disturbance of OB and OC survival may have deleterious effects on the osseointegration of orthopedic implants. Further in vivo studies are needed to investigate the osseointegration of silver coated implants prior to their widespread clinical application


Bone & Joint Research
Vol. 6, Issue 3 | Pages 144 - 153
1 Mar 2017
Kharwadkar N Mayne B Lawrence JE Khanduja V

Objectives

Bisphosphonates are widely used as first-line treatment for primary and secondary prevention of fragility fractures. Whilst they have proved effective in this role, there is growing concern over their long-term use, with much evidence linking bisphosphonate-related suppression of bone remodelling to an increased risk of atypical subtrochanteric fractures of the femur (AFFs). The objective of this article is to review this evidence, while presenting the current available strategies for the management of AFFs.

Methods

We present an evaluation of current literature relating to the pathogenesis and treatment of AFFs in the context of bisphosphonate use.


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 583 - 597
1 May 2013
Kurien T Pearson RG Scammell BE

We reviewed 59 bone graft substitutes marketed by 17 companies currently available for implantation in the United Kingdom, with the aim of assessing the peer-reviewed literature to facilitate informed decision-making regarding their use in clinical practice. After critical analysis of the literature, only 22 products (37%) had any clinical data. Norian SRS (Synthes), Vitoss (Orthovita), Cortoss (Orthovita) and Alpha-BSM (Etex) had Level I evidence. We question the need for so many different products, especially with limited published clinical evidence for their efficacy, and conclude that there is a considerable need for further prospective randomised trials to facilitate informed decision-making with regard to the use of current and future bone graft substitutes in clinical practice.

Cite this article: Bone Joint J 2013;95-B:583–97.