Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 105 - 105
1 Jan 2017
Cortini M Avnet S Massa A Baldini N
Full Access

Osteosarcoma (OS) is an aggressive bone malignancy with a high relapse rate despite combined treatment with surgery and multiagent chemotherapy. As for other cancers, OS-associated microenvironment may contribute to tumor initiation, growth, and metastasis. We consider mesenchymal stromal cells (MSC) as a relevant cellular component of OS microenvironment, and have previously found that the interaction between MSC and tumor cells is bidirectional: tumor cells can modulate their peripheral environment that in turn becomes more favourable to tumor growth through metabolic reprogramming (1). Stem-like cells were derived from HOS osteosarcoma cell line by using the spherogenic system (2). CSC isolated from HOS (HOS-CSC) were co-coltured with MSC isolated from bone marrow. Cell lysates and supernatants were collected for the analysis of RNA expression and of secreted cytokines, by Q-RT-PCR and specific ELISA assays, respectively. Here, we determined the effects of MSC on OS stemness and migration, two major features associated with recurrence and chemoresistance. Recruitment of MSC to the tumor environment leads to enhanced proliferation of OS stem cells, which increase the expression levels of TGFβ1. The latter, in turn, could be responsible for the activation of NF-kB genes and IL-6 secretion by MSC. Pro-tumorigenic effects of MSC, via IL-6, including induction of HOS-CSC migration and sphere growth, can be counteracted by IL-6 neutralizing antibody. The presence of MSC is also responsible for increased expression of adhesion molecules involved in intra- or extra-vasation. Stromal cells in combination with OS spheres exploit a vicious cycle where the presence of CSC stimulates mesenchymal cytokine secretion, which in turn increases stemness, proliferation, migration, and metastatic potential of CSC. Furthermore, for the first time we identified a novel OS stem cell marker, the Met proto-oncogene, that is frequently overexpressed and is pathogenetically relevant in OS (2 and 3). Altogether, our data corroborates the concept that a comprehensive knowledge of the interplay between tumor and stroma that also includes the stem-like fraction of tumor cells is needed to develop novel and effective anti-cancer therapies


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 104 - 104
1 Jul 2014
Sollazzo V
Full Access

Summary Statement. In this study we suggested a possible role of prion proteins genes in osteosarcoma. Therefore, the inhibition of prion proteins expression must be tested because it could represent a new approach to the molecular treatment of osteosarcoma. Introduction. Although osteosarcoma is the most common bone malignancy, the molecular and cellular mechanisms influencing its pathogenesis have remained elusive. Prion proteins (PRNP and PRND), known mostly for its involvement in neurodegenerative spongiform encephalopathies, have been recently demonstrated to be involved in resistance to apoptosis, tumorigenesis, proliferation and metastasis. Patients & Methods. The main aim of research was to study whether prion proteins were over-expressed in human osteosarcoma, and if prion proteins could have a role also in osteosarcomas. We evaluated differential gene expression between 22 cases of osteosarcoma and 40 cases of normal bone specimens through cDNA microarray analysis spanning a substantial fraction of the human genome. Results. PRNP and PRND are significantly over-expressed in osteosarcoma. PRNP and PRND appear involved with some important genes related to tumorigenesis and apoptosis. PRNP is linked to PTK2, RBBP9 and TGFB1 while PRND is linked to TNFSF10, BCL2A1, NFKB2 and TP53RK. Discussion/Conclusion. Increased expression on Affymetrix arrays of prion proteins seems to be associated with the development of osteosarcoma. Prions seem to induce a negative regulation of apoptosis, thus promoting osteosarcoma development and progression. Osteosarcoma is a very aggressive tumor and even after modern chemotherapy and excision of tumors efforts are needed to improve clinical outcome. Since Prion proteins seem to be related to osteosarcoma development, their inhibition could represent a new approach to the molecular treatment of osteosarcoma


Bone & Joint Research
Vol. 6, Issue 3 | Pages 137 - 143
1 Mar 2017
Cho HS Park YK Gupta S Yoon C Han I Kim H Choi H Hong J

Objectives

We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model.

Methods

We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice.