Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:

Aim. The knee radiograph is a commonly requested investigation as the knee joint is commonly injured. Each radiograph exposes 0.01mSv of radiation to the patient that is equivalent to 1.5 days of natural background radiation. Also, each knee radiograph costs approximately £37.16 to produce. The aim of the clinical audit was to use the Pittsburgh knee rules to attempt to reduce the number of knee radiographs taken in patients with acute knee injuries and hence reduce the dose of ionising radiation the patient receives. Method. A retrospective audit was undertaken. 149 knee requests and radiographs taken during October 2016 were evaluated. Each knee radiograph request including patient history and clinical examination was graded against the Pittsburgh knee rules to give a qualifying score. The Pittsburgh knee rules assigns 1 point for each of the following; blunt trauma or a fall, age less than 12 years or over 50 years, and unable to take 4 limping weight bearing steps in the emergency department. A Pittsburgh knee rule qualifying score warranting a knee radiograph is 2 or more points, where the patient must have had blunt trauma or a fall. A Pittsburgh knee rule score less than 2 points predicts a non-fractured knee and hence no radiograph warranted. Each radiograph was reviewed if a fracture was present or not. Results. The clinical audit identified 85 true negative patients where their Pittsburgh knee rule score was less than 2 points and they did not have a fracture of the knee joint. The Pittsburgh knee rule score of less than 2 points did not warrant obtaining knee radiographs. Therefore, a total of 85 knee radiographs were unnecessary which is equivalent to 127.5 days of background radiation. The financial burden of these unnecessary radiographs is £2648.60. The negative predictive value of the Pittsburgh knee rules in this audit was 93.4%. Discussion. The clinical audit shows that the use of the Pittsburgh knee rules scoring system can reduce the number of knee radiographs obtained by 57.4% and hence the doses of ionising radiation patients are exposed to. The audit also showed this clinical scoring system has a high negative predictive value that when utilised can discern patients with a normal knee joint who do not require a knee radiograph. In conclusion employing the Pittsburgh knee rule scoring system can improve patient safety by reducing ionising radiation exposure and can reduce financial costs of patient encounters


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 26 - 26
1 Apr 2018
Brenner R Zimmermann M Joos H Kappe T Riegger J
Full Access

Cryotherapy is often applied after injuries of synovial joints. Although positive clinical effects on periarticular swelling and pain are well known, the effects on molecular processes of cartilage and synovial cells remained largely unknown so far. Therefore, the hypothesis was tested that hypothermia alleviates the synovial reaction and prevents chondrocyte death as well as cartilage destructive processes after blunt trauma. Human articular cartilage and synovial tissue was obtained with informed consent from patients undergoing knee joint replacement. Cartilage explants from macroscopically intact cartilage were impacted by a drop-tower apparatus with defined energy (0.59J) and cultivated for 24h or 7d at following temperature conditions: 2h, 16h or throughout at 27°C and afterwards or throughout at 37°C. Furthermore, human fibroblast-like synoviocytes (FLS) were stimulated with conditioned medium from traumatized cartilage (t-CM) and cultivated as indicated above up to 4d. Effects of hypothermia were evaluated by live/dead assay, gene expression (RQ-PCR), and type II collagen synthesis/cleavage as well as release of MMP-2, MMP-13 and IL-6 on protein level (ELISA, gelatin zymography). Statistical analysis was performed by 2-way ANOVA. The experimental study was performed in the research laboratory of the Orthopedic Department, University Hospital Ulm, Germany. Hypothermic treatment significantly improved chondrocyte viability 7d after blunt cartilage trauma (2h: p=0.016; 16h: p=0.036; throughout: p=0.039). 2h posttraumatic hypothermia attenuated expression of MMP-13 (m-RNA: p=0.012; protein: p=0.024). While type II collagen synthesis was significantly increased after 16h hypothermia, MMP-13 expression (mRNA: p=0.003; protein: p<0.001) and subsequent cleavage of type II collagen (p=0.049) were inhibited. Continuous hypothermia for 7d further significantly suppressed MMP release (proMMP-2, active MMP-2 and MMP-13) and type II collagen breakdown. On day 4 t-CM stimulated FLS revealed significantly suppressed gene expression of matrix-destructive enzymes (16h: ADAMTS-4; throughout: ADAMTS-4, MMP-3, MMP-13) and by trend reduced IL-6 expression in case of 16h or continuous hypothermia. Overall, hypothermia for only 2h and/or 16h after blunt cartilage trauma exhibited significant cell- and matrix-protective effects and promoted anabolic activity of surviving chondrocytes. Expression of matrix-destructive enzymes by FLS stimulated with Danger Associated Molecular Patterns (DAMPs) released from traumatized cartilage was attenuated by more prolonged hypothermia. These findings suggest that an optimized cryotherapy management after cartilage trauma might have the potential to ameliorate early molecular processes usually associated with the pathogenesis of posttraumatic osteoarthritis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 92 - 92
1 Apr 2018
Liebsch C Seiffert T Vlcek M Kleiner S Vogele D Beer M Wilke HJ
Full Access

Rib fractures (RF) represent the most common bone fracture after blunt trauma, occurring in 10–20% of all trauma patients and leading to concomitant injuries of the inner organs in severe cases. However, a standardized classification system for serial rib fractures (SRF) does still not exist. Basic knowledge about the facture pattern of SRF would help to predict organ damage, support forensic medical examinations, and provide data for in vitro and in silico studies regarding the thoracic stability. The purpose of our study was therefore to identify specific SRF patterns after blunt chest trauma. All SRF cases (≥3 subsequent RF) between mid-2008 and end of 2015 were extracted from the CT database of our University Hospital (n=383). Fractures were assigned to anterior, antero-lateral, lateral, postero-lateral, and posterior location within the transverse plane (36° each) using an angular measuring technique (reliability ±2°). Rib level, fracture type (transverse, oblique, multifragment, infracted), as well as degree of dislocation (none, </≥ rib width) were recorded and each related to the cause of accident. In total, 3747 RF were identified (9.7 per patient, ranging from 3 (n=25) to 33 (n=1)). On average, most RF occurred in crush/burying injuries (15.9, n=13) and pedestrian accidents (12.2, n=14), least in car/truck accidents (8.8, n=76). Altogether, RF gradually increased from rib 1 (n=140) towards rib 5 (n=517) and then decreased towards rib 12 (n=49), showing a bell-shaped distribution. More RF were detected on the left thorax (n=2027) than on the right (n=1720). Overall, most RF were found in the lateral (33%) and postero-lateral (29%) segment. Posterior RF mostly occurred in the lower thorax (63%), whereas anterior (100%), antero-lateral (87%), and lateral (63%) RF mostly appeared in the upper thorax. RF were distributed symmetrically to the sagittal plane, showing a hotspot (up to 98 RF) at rib levels 4 to 7 in the lateral segment and rib level 5 in the antero-lateral segment. In the car/truck accident group, 47% of all RF were in the lateral segment, in case of frontal collision (n=24) even 60%. Fall injuries (n=141) entailed mostly postero-lateral RF (35%). In case of falls >3 m (n=45), 48% more RF were detected on the left thorax compared to the right. CPR related SRF (n=33) showed a distinct fracture pattern, since 70% of all RF were located antero-laterally. Infractions were the most observed fracture type (44%), followed by oblique (25%) and transverse (18%) fractures, while 46% of all RF were dislocated (15% ≥ rib width). SRF show distinct fracture patterns depending on the cause of accident. Additional data should be collected to confirm our results and to establish a SRF classification system


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 66 - 66
1 Apr 2018
Kaiser K Kovtun A Prystaz K Haffner-Luntzer M Waetzig GH Rose-John S Ignatius A
Full Access

Confirming clinical evidence, we recently demonstrated in a rodent model that a severe trauma which induces an acute systemic inflammation considerably impairs fracture healing. Interleukin-6 (IL-6) is a key cytokine in posttraumatic inflammation as its serum level correlates with injury severity and mortality. IL-6 signals are transmitted by the transmembrane glycoprotein 130 (gp130) via two distinct mechanisms: firstly, through classic signalling via the membrane-anchored IL-6 receptor and secondly, through trans-signalling using a soluble IL-6 receptor. Whereas IL-6 trans-signalling is considered a danger signal driving inflammation, classic signalling may mediate anti-inflammatory, pro-regenerative processes. The role of the two distinct pathways in bone healing has not yet been elucidated. Here, we studied the function of IL-6 in the pathophysiology of compromised bone healing induced by severe trauma. Male C57BL/6J mice received an osteotomy of the right femur stabilized with an external fixator. Systemic inflammation was induced by additional blunt chest trauma (TxT) applied immediately after the osteotomy. Mice were injected with either fusion protein sgp130Fc, which selectively inhibits IL-6 trans-signalling, or a neutralizing anti-IL-6 antibody (IL-6 Ab), blocking both signalling pathways. Control mice received vehicle solution. Animals were euthanised 21 days after surgery. Fracture healing was analysed by biomechanical testing, μCT, and histomorphometry (n= 6–9; p=0.05; ANOVA/Fisher LSD post hoc). Thoracic trauma significantly impaired fracture healing [bending stiffness (EI) −57%, p<0.00]. Treatment with sgp130Fc significantly attenuated bone regeneration as demonstrated by an increased EI (+110%, p<0.00) and a trend of augmented apparent Young”s modulus (+69%, p=0.13) compared to TxT control. Histomorphometric analysis could not detect differences in the amount of bone, confirming µCT results, but revealed a significantly decreased cartilage area after treatment with sgp130Fc (−76%, p=0.01). Inhibition of both signalling pathways with IL-6 Ab, however, did not have any effects. In conclusion, severe trauma significantly impaired fracture healing, confirming previous studies. Treatment with sgp130Fc ameliorated the negative effects providing evidence that IL-6 trans-signalling triggers the excessive immune response after trauma impairing bone regeneration. Injection of IL-6 Ab did not improve fracture healing thereby implying that classic signalling may rather have beneficial effects


Bone & Joint 360
Vol. 7, Issue 1 | Pages 38 - 39
1 Feb 2018
Das A


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1394 - 1400
1 Oct 2006
Eid K Labler L Ertel W Trentz O Keel M

Systemic factors are believed to be pivotal for the development of heterotopic ossification in severely-injured patients. In this study, cell cultures of putative target cells (human fibroblastic cells, osteoblastic cells (MG-63), and bone-marrow stromal cells (hBM)) were incubated with serum from ten consecutive polytraumatised patients taken from post-traumatic day 1 to day 21 and with serum from 12 healthy control subjects.

The serum from the polytraumatised patients significantly stimulated the proliferation of fibroblasts, MG-63 and of hBM cells. The activity of alkaline phosphatase in MG-63 and hBM cells was significantly decreased when exposed to the serum of the severely-injured patient. After three weeks in 3D cell cultures, matrix production and osteogenic gene expression of hBM cells were equal in the patient and control groups. However, the serum from the polytraumatised patients significantly decreased apoptosis of hBM cells compared with the control serum (4.3% vs 19.1%, p = 0.031).

Increased proliferation of osteoblastic cells and reduced apoptosis of osteoprogenitors may be responsible for increased osteogenesis in severely-injured patients.