Aims. The aim of this study was to investigate the effects of preoperative
The ageing population and an increase in both
the incidence and prevalence of cancer pose a healthcare challenge, some
of which is borne by the orthopaedic community in the form of osteoporotic
fractures and metastatic bone disease. In recent years there has
been an increasing understanding of the pathways involved in bone
metabolism relevant to osteoporosis and metastases in bone. Newer
therapies may aid the management of these problems. One group of
drugs, the antibody mediated anti-resorptive therapies (AMARTs)
use antibodies to block bone resorption pathways. This review seeks
to present a synopsis of the guidelines, pharmacology and potential pathophysiology
of AMARTs and other new anti-resorptive drugs. . We evaluate the literature relating to AMARTs and new anti-resorptives
with special attention on those approved for use in clinical practice. Denosumab, a monoclonal antibody against Receptor Activator for
Nuclear Factor Kappa-B Ligand. It is the first AMART approved by
the National Institute for Health and Clinical Excellence and the
US Food and Drug Administration. Other novel anti-resorptives awaiting
approval for clinical use include Odanacatib. Denosumab is indicated for the treatment of osteoporosis and
prevention of the complications of bone metastases. Recent evidence
suggests, however, that denosumab may have an adverse event profile
similar to
Heterotopic ossification (HO) is a potentially devastating complication of the surgical treatment of a proximal humeral fracture. The literature on the rate and risk factors for the development of HO under these circumstances is lacking. The aim of this study was to determine the incidence and risk factors for the development of HO in these patients. A retrospective analysis of 170 patients who underwent operative treatment for a proximal humeral fracture between 2005 and 2016, in a single institution, was undertaken. The mean follow-up was 18.2 months (1.5 to 140). The presence of HO was identified on follow-up radiographs.Aims
Methods