Advertisement for orthosearch.org.uk
Results 1 - 20 of 213
Results per page:
Bone & Joint Research
Vol. 6, Issue 6 | Pages 366 - 375
1 Jun 2017
Neves N Linhares D Costa G Ribeiro CC Barbosa MA

Objectives. This systematic review aimed to assess the in vivo and clinical effect of strontium (Sr)-enriched biomaterials in bone formation and/or remodelling. Methods. A systematic search was performed in Pubmed, followed by a two-step selection process. We included in vivo original studies on Sr-containing biomaterials used for bone support or regeneration, comparing at least two groups that only differ in Sr addition in the experimental group. Results. A total of 572 references were retrieved and 27 were included. Animal models were used in 26 articles, and one article described a human study. Osteoporotic models were included in 11 papers. All articles showed similar or increased effect of Sr in bone formation and/or regeneration, in both healthy and osteoporotic models. No study found a decreased effect. Adverse effects were assessed in 17 articles, 13 on local and four on systemic adverse effects. From these, only one reported a systemic impact from Sr addition. Data on gene and/or protein expression were available from seven studies. Conclusions. This review showed the safety and effectiveness of Sr-enriched biomaterials for stimulating bone formation and remodelling in animal models. The effect seems to increase over time and is impacted by the concentration used. However, included studies present a wide range of study methods. Future work should focus on consistent models and guidelines when developing a future clinical application of this element. Cite this article: N. Neves, D. Linhares, G. Costa, C. C. Ribeiro, M. A. Barbosa. In vivo and clinical application of strontium-enriched biomaterials for bone regeneration: A systematic review. Bone Joint Res 2017;6:366–375. DOI: 10.1302/2046-3758.66.BJR-2016-0311.R1


Bone & Joint Research
Vol. 5, Issue 10 | Pages 500 - 511
1 Oct 2016
Raina DB Gupta A Petersen MM Hettwer W McNally M Tägil M Zheng M Kumar A Lidgren L

Objectives. We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. Materials and Methods. We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy. Results. C2C12 cells differentiated into osteoblast-like cells expressing prominent bone markers after seeding on the biomaterial. The conditioned media of the ROS 17/2.8 contained bone morphogenetic protein-2 (BMP-2 8.4 ng/mg, standard deviation (. sd. ) 0.8) and BMP-7 (50.6 ng/mg, . sd. 2.2). In vitro, this secretome induced differentiation of skeletal muscle cells L6 towards an osteogenic lineage. Conclusion. Extra cellular matrix proteins and growth factors leaking from a bone cavity, along with a ceramic biomaterial, can synergistically enhance the process of ectopic ossification. The overlaying muscle acts as an osteoinductive niche, and provides the required cells for bone formation. Cite this article: D. B. Raina, A. Gupta, M. M. Petersen, W. Hettwer, M. McNally, M. Tägil, M-H. Zheng, A. Kumar, L. Lidgren. Muscle as an osteoinductive niche for local bone formation with the use of a biphasic calcium sulphate/hydroxyapatite biomaterial. Bone Joint Res 2016;5:500–511. DOI: 10.1302/2046-3758.510.BJR-2016-0133.R1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 114 - 114
2 Jan 2024
Fiordalisi M Sousa I Barbosa M Gonçalves R Caldeira J
Full Access

Intervertebral disc (IVD) degeneration is the most frequent cause of Low Back Pain (LBP) affecting nearly 80% of the population [1]. Current treatments fail to restore a functional IVD or to provide a long-term solution, so, there is an urgent need for novel therapeutic strategies. We have defined the IVD extracellular matrix (ECM) profile, showing that the pro-regenerative molecules Collagen type XII and XIV, are uniquely expressed during fetal stages [2]. Now we propose the first fetal injectable biomaterial to regenerate the IVD. Fetal decellularized IVD scaffolds were recellularized with adult IVD cells and further implanted in vivo to evaluate their anti-angiogenic potential. Young decellularized IVD scaffolds were used as controls. Finally, a large scale protocol to produce a stable, biocompatible and easily injectable fetal IVD-based hydrogel was developed. Fetal scaffolds were more effective at promoting Aggrecan and Collagen type II expression by IVD cells. In a Chorioallantoid membrane assay, only fetal matrices showed an anti-angiogenic potential. The same was observed in vivo when the angiogenesis was induced by human NP cells. In this context, human NP cells were more effective in GAG synthesis within a fetal microenvironment. Vaccum-assisted perfusion decellularized IVDs were obtained, with high DNA removal and sGAG retention. Hydrogel pre-solution passed through 21-30G needles. IVD cells seeded on the hydrogels initially decreased metabolic activity, but increased up to 70% at day 7, while LDH assay revealed cytotoxicity always below 30%. This study will open new avenues for the establishment of a disruptive treatment for IVD degeneration with a positive impact on the angiogenesis associated with LBP, and on the improvement of patients’ quality of life. Acknowledgements: Financial support was obtained from EUROSPINE, ON Foundation and FCT (Fundação para a Ciência e a Tecnologia)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 91 - 91
1 Jan 2017
Aguilera-Correa J Ferraresi-Pestana A Velasco D Del Río M Padilla S Esteban J García-Martín A
Full Access

Bone-regenerative and biocompatible materials are indicated for the regeneration of bone lost in periodontology and maxillofacial surgery. Bio-Oss is a natural bone mineral for bone grafting of bovine origin and the most common used in this kind of interventions. 1. Sil-Oss is a new synthetic nanostructured monetite-based material that is reabsorbed at the same time that is replaced by new bone tissue . 2. Bacterial infection is one of the complications related to this kind of material. Streptococcus oralis is the most associated oral infecting pathogen to oral surgery. 3. and Staphylococcus aureus is the most common infecting pathogen to maxillofacial non-oral interventions. 4. Here we evaluated bacterial adherence of two of the most common infecting bacteria of this kind of biomaterial: S. oralis and S. aureus, on Bio-Oss and Sil-Oss. S. oralis ATCC 9811 and S. aureus 15981 strains were used. Bacterial adherence was evaluated using the modified previously described protocol of Kinnari et al. 5. that was adapted to our biomaterial. The quantification was performed by the drop plate method. 6. The statistical data were analyzed by pairwise comparisons using the nonparametric Mann-Whitney test with a level of statistical significance of p<0.05. Values are cited and represented as medians. Bacterial adherence decreased significantly on Sil-Oss compared to Bio-Oss. S. oralis ATCC 9811 adherence was between 11 and 13-fold less on Sil-Oss compared to Bio-oss. In the case of S. aureus15981, the adherence was between 4 and 6-fold less on Sil-Oss compared to Bio-Oss. Sil-Oss nanostructured monetite-based biomaterial could be considered as a promising biomaterial to be used for the regeneration of bone defects since the bacterial adherence on it is lower than on another currently used material


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 46 - 46
1 Apr 2018
Raina DB Isaksson H Tägil M Lidgren L
Full Access

Background. The doses of local rhBMP-2 in commercially available materials are high with known drawbacks such as inflammation and premature bone resorption. The latter can be prevented by adding bisphosphonates like zoledronic acid (ZA) but systemic ZA has side effects and patient adherence to treatment is low. In a recent study, we have shown that local co-delivery of rhBMP-2 and ZA via a calcium sulphate/hydroxyapatite (CS-HA) biomaterial can be used to regenerate both cortical and trabecular bone in a rat model of metaphyseal bone defect. Even low doses of local ZA in the biomaterial showed promising results and increased bone formation within the defect compared to the controls. A step before clinical translation of the local treatment regimen is to evaluate the in-vivo release kinetics of these additives and thus in this study, we aimed to investigate the in-vivo pharmacokinetics of rhBMP-2 and ZA from the CS-HA biomaterial in a rat abdominal muscle pouch model over a period of 4-weeks. Methods. In-vivo release kinetics of 125I labeled rhBMP-2 and 14C labeled ZA was performed using an abdominal muscle pouch model in rats (n=6). Both rhBMP-2 and ZA were labeled commercially with a radiochemical purity of >95%. The detection of 125I -rhBMP-2 release was performed by implanting pellets of the CS-HA biomaterial containing 125I -rhBMP-2 and ZA and the same animals followed over a period of 4-weeks (day 1, 3, 7, 14, 21& 28) using SPECT imaging. Similarly, the 14C-ZA was detected by implanting CS-HA pellets containing rhBMP-2 and 14C-ZA. Release was detected via scintillation counting and at each time point (Day 1, 7, 14& 28) 6-animals were sacrificed. Results. BMP Release. The CS-HA biomaterial retained 95±11% after 3-days, 88±12% after a week, 66±9% after 2 weeks, 51±5% after 3 weeks and 43±7% of 125I labeled rhBMP-2 after 4-weeks in-vivo (SPECT-CT). ZA Release. The CS-HA biomaterial retained 89±14% after a week, 84±8% after 2 weeks, 83±9% after 3 weeks and 77±3% of 14C labeled ZA after 4 weeks of in-vivo implantation. Discussion. Improved carriers and better knowledge of the release might improve the effect of bone active drugs in orthopedics. Our previous study shows that an off-the-shelf ceramic biomaterial combined with ZA alone or with both rhBMP-2 and ZA can be used to regenerate bone with potential for clinical translational. This study demonstrates long-term co-delivery of both rhBMP-2 and ZA in-vivo via the biomaterial. Constant availability of rhBMP-2 over a long period of time can give osteoinductive properties to the material while presence of local ZA prevents premature bone loss. The pharmacokinetic release pattern differs from what we have reported in vitro with less BMP and more ZA being released in vivo during the first 4 weeks. We speculate that rapid protein passivation of the ceramic material slows the release of BMP and partly preventing the ZA binding to apatite


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 38 - 38
1 Nov 2021
Staubli F Stoddart M D'Este M Schwab A
Full Access

Introduction. Current cell-based treatments and marrow stimulating techniques to repair articular cartilage defects are limited in restoring the tissue in its native composition. Despite progress in cartilage tissue engineering and chondrogenesis in vitro, the main limitation of this approach is the progression towards hypertrophy during prolonged culture in pellets or embedded in biomaterials. The objectives of this study were (A) to compare human bone marrow-derived mesenchymal stromal cells (hMSC) chondrogenesis and hypertrophy in pellet culture from single cells or cell spheroids and (B) to investigate the effect of tyramine-modified hyaluronic acid (THA) and collagen I (Col) content in composite hydrogels on the chondrogenesis and hypertrophy of encapsulated hMSC spheroids. Materials and Methods. Pellet cultures were prepared either from hMSC single cells (250’000 cells/pellet) or hMSC spheroids (282 cells/spheroid) at the same final cell concentration (250’000 cells/pellet = 887 spheroids/pellet). The effect of polymer concentration on encapsulated hMSC spheroids (887 spheroids/hydrogel) was investigated in THA-Col hydrogels (50μl) at the following concentrations (THA-Col mg/ml): Group (1) 12.5–2.5, (2) 16.7–1.7, (3) 12.5–1.7, (4) 16.7–2.5 mg/ml. All samples were cultured for 21 days in standard chondrogenic differentiation medium containing 10ng/ml TGF-β1. Chondrogenic differentiation and hypertrophy of both pellet cultures and hMSCs spheroids encapsulated in THA-Col were analysed using gene expression analysis (Aggrecan (ACAN), COL1A1, COL2A1, COL10A1), dimethylmethylene-Blue assay to quantify glycosaminoglycans (GAGs) retained in the samples and (immuno-) histological staining (Safranin-O, collagen II, aggrecan) on day 1 and day 21 (n=3 donors). Results. The culture of hMSCs in pellets based on single cells or spheroids resulted in an increase in chondrogenic-associated markers COL2A1 (2’900–3’400-fold) and ACAN (45–47-fold) compared to respective samples on day 1 in both groups. GAGs increased in spheroid pellets to 21.2±3.4 mg/ml and in single cell pellets to 20.8±6.6 mg/ml on day 21. Comparing the levels of hypertrophic markers, single cell pellets showed 7-fold and 20-fold higher expression of COL1A1 and COL10A1 than spheroid pellets on day 21. The encapsulation of hMSC spheroids in THA-Col resulted in an upregulation of chondrogenic-associated markers and GAG content in all hydrogels with differences in cell differentiation related to the Col and THA polymer ratio, while level of hypertrophy was comparable in all groups with values similar to the spheroid pellet group. Spheroids embedded in hydrogels with lower THA content (group 1 and 3) resulted in more pronounced chondrogenic phenotype marked by upregulation of COL2A1 (3’200–4’500-fold) and ACAN (152–179-fold) relative to the respective samples on day 1. Spheroids embedded in higher THA content hydrogels (group 2 and 4) showed less pronounced chondrogenesis marked by lower upregulation of COL2A1 (980–1800-fold) and ACAN (25–68-fold, relative to day 1 samples). This was confirmed by quantification of GAGs, increasing from 2.5±1.9 and 2.5±1.7 mg/ml (day 1) to 11.4±2.5 and 9.9±3.8 mg/ml on day 21 for groups 1 and 4, respectively. (Immuno-) histological stainings resulted in a more homogenous staining in lower THA content hydrogels compared to a more local matrix deposition in samples with higher THA content. Conclusion. The reduced level of hypertrophy in hMSC pellets prepared from cell spheroids compared to single cell pellets at same cell count might be related to the packing density of the cells with cells being more densely packed in single cell pellets compared to pellets from spheroids. Investigating the effect of polymer ratios on chondrogenesis, it seems that the THA content is the driving factor influencing hMSC chondrogenesis rather than Col content in THA-Col composites at comparable mechanical properties. This study highlights the feasibility to use hMSC spheroids as alternative approach to study in vitro chondrogenic differentiation and the suitability to investigate the effect of biomaterial composition on chondrogenesis and hMSC hypertrophy


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 83 - 83
1 Nov 2018
Procter P Insley G Engqvist H Pujari-Palmer M Billstrom GH Larsson S
Full Access

There are clinical situations in fracture repair, e.g. osteochondral fragments, where current implant hardware is insufficient. The proposition of an adhesive enabling fixation and healing has been considered but no successful candidate has emerged thus far. The many preclinical and few clinical attempts include fibrin glue, mussel adhesive and even “Kryptonite” (US bone void filler). The most promising recent attempts are based on phosphorylating amino acids, part of a common cellular adhesion mechanism linking mussels, caddis fly larvae, and mammals. Rapid high bond strength development in the wetted fatty environment of fractured bone, that is sustained during biological healing, is challenging to prove both safety and efficacy. Additionally, there are no “predicate” preclinical animal and human models which led the authors to develop novel evaluations for an adhesive candidate “OsStic. tm. ” based on calcium salts and amino acids. Adhesive formulations were evaluated in both soft (6/12 weeks) and hard tissue (3,7,10,14 & 42 days) safety studies in murine models. The feasibility of a novel adhesiveness test, initially proven in murine cadaver femoral bone, is being assessed in-vivo (3,7,10,14 & 42 days) in bilateral implantations with a standard tissue glue as the control. In parallel an ex-vivo human bone model using freshly harvested human donor bone is under development to underwrite the eventual clinical application of such an adhesive. This is part of a risk mitigation project bridging between laboratory biomaterial characterisation and a commercial biomaterial development where safety and effectiveness have to meet today´s new medical device requirements


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 960 - 966
1 Jul 2006
Pluhar GE Turner AS Pierce AR Toth CA Wheeler DL

Critical size defects in ovine tibiae, stabilised with intramedullary interlocking nails, were used to assess whether the addition of carboxymethylcellulose to the standard osteogenic protein-1 (OP-1/BMP-7) implant would affect the implant’s efficacy for bone regeneration. The biomaterial carriers were a ‘putty’ carrier of carboxymethylcellulose and bovine-derived type-I collagen (OPP) or the standard with collagen alone (OPC). These two treatments were also compared to “ungrafted” negative controls. Efficacy of regeneration was determined using radiological, biomechanical and histological evaluations after four months of healing. The defects, filled with OPP and OPC, demonstrated radiodense material spanning the defect after one month of healing, with radiographic evidence of recorticalisation and remodelling by two months. The OPP and OPC treatment groups had equivalent structural and material properties that were significantly greater than those in the ungrafted controls. The structural properties of the OPP- and OPC-treated limbs were equivalent to those of the contralateral untreated limb (p > 0.05), yet material properties were inferior (p < 0.05). Histopathology revealed no residual inflammatory response to the biomaterial carriers or OP-1. The OPP- and OPC-treated animals had 60% to 85% lamellar bone within the defect, and less than 25% of the regenerate was composed of fibrous tissue. The defects in the untreated control animals contained less than 40% lamellar bone and more than 60% was fibrous tissue, creating full cortical thickness defects. In our studies carboxymethylcellulose did not adversely affect the capacity of the standard OP-1 implant for regenerating bone


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 17 - 17
1 Mar 2021
Hossain U Ghouse S Nai K Jeffers J
Full Access

Abstract. Objectives. Additive manufacturing (AM) enables fine control over the architecture of porous lattice structures, and the resulting mechanical performance. Orthopaedic implants may benefit from the tailored stiffness/elastic modulus of these AM biomaterials, as the stiffness can be made to closer match the properties of the replaced trabecular bone. Methods. This study used laser powder bed fusion (PBF) to create stochastic porous lattice structures in stainless steel (SS316L) and titanium alloy (Ti6Al4V), with modifications that aimed to overcome PBF manufacturing limitations of build angles. The structures were tested in uni-axial compression (n = 5) in 10 load orientations relative to the structure, including the three orthogonal axes. Results. The testing verified that no hidden peaks in elastic modulus existed in the stochastic structure. The standard deviation of the 10 elastic modulus values in the final structure decreased from 249 MPa to 101 MPa when made in SS316L and from 95.9 MPa to 52.5 MPa for Ti6Al4V, indicating the structures were more isotropic. Conclusions. These modified stochastic lattices have similar stiffness to cancellous bone and have controllable anisotropy, giving them the potential to be used within implants which match the stiffness of trabecular bone. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 110 - 110
1 Nov 2018
Nürnberger S
Full Access

Organ and tissue decellularisation are promising approaches for the generation of scaffolds for tissue regeneration since these materials provides the accurate composition and architecture for the specific tissues. Repopulation of the devitalized matrixes is the most critical step and a challenge, especially in dense tissues such as cartilage. To overcome this difficulty, several chemical and mechanical strategies have been developed. Chemical extraction targeting specific matrix components such as elastin, makes auricular cartilage accessible for cells via channels originating from the elastic fiber network. However, chemical treatment for glycosaminoglycan removal is not sufficient to allow cell ingrowth in articular cartilage. As alternative, laser perforation has been developed allowing to engrave fine structures with controlled size, distance and depth, with reproducibility and high throughput. Two of the most commonly used laser technologies used in the medical field, the CO. 2. and femtosecond laser, were applied to hyaline cartilage with very different structural effect. Within this talk, the structuralizing possibilities of laser and enzymatic treatments, the effect on the matrix and the general advantages and disadvantages for tissue engineering are discussed. We believe that the optimal combination of chemical and laser treatment has high potential for a new generation of biomaterials for tissue engineering


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 907 - 914
1 Sep 1999
Bobyn JD Stackpool GJ Hacking SA Tanzer M Krygier JJ

We have studied the characteristics of bone ingrowth of a new porous tantalum biomaterial in a simple transcortical canine model using cylindrical implants 5 × 10 mm in size. The material was 75% to 80% porous by volume and had a repeating arrangement of slender interconnecting struts which formed a regular array of dodecahedron-shaped pores. We performed histological studies on two types of material, one with a smaller pore size averaging 430 μm at 4, 16 and 52 weeks and the other with a larger pore size averaging 650 μm at 2, 3, 4, 16 and 52 weeks. Mechanical push-out tests at 4 and 16 weeks were used to assess the shear strength of the bone-implant interface on implants of the smaller pore size. The extent of filling of the pores of the tantalum material with new bone increased from 13% at two weeks to between 42% and 53% at four weeks. By 16 and 52 weeks the average extent of bone ingrowth ranged from 63% to 80%. The tissue response to the small and large pore sizes was similar, with regions of contact between bone and implant increasing with time and with evidence of Haversian remodelling within the pores at later periods. Mechanical tests at four weeks indicated a minimum shear fixation strength of 18.5 MPa, substantially higher than has been obtained with other porous materials with less volumetric porosity. This porous tantalum biomaterial has desirable characteristics for bone ingrowth; further studies are warranted to ascertain its potential for clinical reconstructive orthopaedics


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 68 - 68
1 Mar 2021
Goegele C Hoffmann B Linnartz C Konrad J Hahn J Breier A Schroepfer M Meyer M Schulze-Tanzil G
Full Access

Ligament fibroblasts must be mechanosensitive and possess sufficient adaptability to a novel mechanomilieu ensuring the permanent load capacity of the tissue. Once mechanoreceptors are activated, the fibroblasts react with a specific signal transmission (mechanotransduction), which ultimately leads to an adaption of their cytoskeletal organization and protein synthesis. However, the cellular response of anterior cruciate ligament (ACL) fibroblasts to cyclic mechanical stretching is still unclear. Hence, this study should allow a deeper understanding of the reaction profile of mechanically stretched ACL cells in two- (2D) and three-dimensional (3D) biomaterial-free and biomaterial cultures with respect to cell survival, size, orientation, migration and distribution. For the 2D approach consisting of monolayers with 6000 lapine (L) ACL cells per cm2 and for the 3D cultures using preformed LACL cell spheroids (2.5–4/cm2) with 25.000 cells per spheroid, silicone chambers were coated with geltrex and statically colonized with the LACL cells for 24 h before cyclically stretched for 48 h (14 percent uniaxial stretch). A second approach using 3D scaffold cultures was performed which were seeded dynamically for 24 h with LACL cells before cyclically stretched in a novel custom-made mechanostimulator. The scaffolds [polylactic acid (PLA) and polycaprolactone (PCL)] were functionalized with 10 percent gas fluorination and a collagen foam. Scaffolds (120 mm2) were precolonized dynamically with an LACL cell suspension (1 mio cells/mL) for 24 h before stretched for 72 h (4 percent uniaxial stretch). Cell vitality and numbers were monitored. The cytoskeleton orientation was shown by cytochemistry (F-actin) and evaluated (ImageJ). Cell proliferation, based on the DNA content was measured. Cell viability in stretched samples (2D, 3D and scaffold) remained above 90 percent. Stretching on the silicone chambers led to increased cell counts, length and significantly higher colonized areas than in unstretched controls. Higher numbers of LACL cells migrated out of the 3D spheroids under stretching conditions. In response to intermittent stretching, cells oriented in a 70 degrees' angle against the stretch direction in silicone chambers, whereas cell arrangement was more compact on the threads of the scaffolds than in unstretched cultures. In summary, stretching induced a rapid (48 h) cell and cytoskeletal alignment in 2D as well as in 3D cultures. The natural ACL is characterized by a strongly uniaxial cell and extracellular matrix organization which might be achieved in tissue engineered constructs by a suitable cyclic stretching protocol in future


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 849 - 856
1 Sep 1997
Wang W Ferguson DJP Quinn JMW Simpson AHRW Athanasou NA

Abundant implant-derived biomaterial wear particles are generated in aseptic loosening and are deposited in periprosthetic tissues in which they are phagocytosed by mononuclear and multinucleated macrophage-like cells. It has been stated that the multinucleated cells which contain wear particles are not bone-resorbing osteoclasts. To investigate the validity of this claim we isolated human osteoclasts from giant-cell tumours of bone and rat osteoclasts from long bones. These were cultured on glass coverslips and on cortical bone slices in the presence of particles of latex, PMMA and titanium. Osteoclast phagocytosis of these particle types was shown by light microscopy, energy-dispersive X-ray analysis and SEM. Giant cells containing phagocytosed particles were seen to be associated with the formation of resorption lacunae. Osteoclasts containing particles were also calcitonin-receptor-positive and showed an inhibitory response to calcitonin. Our findings demonstrate that osteoclasts are capable of phagocytosing particles of a wide range of size, including particles of polymeric and metallic bio-materials found in periprosthetic tissues, and that after particle phagocytosis, they remain fully functional, hormone-responsive, bone-resorbing cells


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 39 - 39
1 Mar 2013
Morrison R Stott M Wright K McCaskie A Birch M
Full Access

Human mesenchymal stem cells (hMSCs) have the capacity to differentiate into adipocytes, chondrocytes, or osteoblasts, and are an exciting tool to be used in regenerative medicine and surgery. By manipulating the surface structure and physical properties of a biomaterial on which hMSCs can be incorporated, the biological response of these cells at the implant site can be controlled. Whilst both topography and surface stiffness are known to influence differentiation of hMSC's, little is understood of the molecular mechanisms that underpin these responses. In this study we use immunofluorescence and confocal microscopy techniques to assess the change in both the abundance and the distribution of H3K9me2 or H3K9ac patterns in hMSCs cultured on materials with controlled topography and stiffness, under basal and osteogenic conditions. These data demonstrate that levels and localisation of both H3K9me2 and H3K9ac alter in hMSCs cultured on the different substrates and that these surfaces dictate the response to osteogenic stimuli, suggesting that the control of cytoskeletal structure can be linked to chromatin activity. This regulation of histone modification by MSC interaction with the surrounding scaffold provides not only a mechanistic link to the control of cell fate but also the opportunity to design biomaterials that better influence cell activity


Bone & Joint Research
Vol. 6, Issue 5 | Pages 323 - 330
1 May 2017
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Objectives. Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro?. Methods. Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa; spore-forming Bacillus cereus; and yeast Candida albicans. The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes. Results. There was an average linear heating rate of 0.39°C per second up to the target temperature, and thereafter the target temperature was maintained until the end of the experiment. At 60°C and higher (duration 3.5 minutes), there was a 6-log reduction or higher for every micro-organism tested. At 60°C, we found that the shortest duration of effective induction heating was 1.5 minutes. This resulted in a 5-log reduction or higher for every micro-organism tested. Conclusion. Non-contact induction heating of a titanium disk is effective in reducing bacterial load in vitro. These promising results can be further explored as a new treatment modality for infections of metal orthopaedic implants. Cite this article: B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings. Bone Joint Res 2017;6:323–330. DOI: 10.1302/2046-3758.65.BJR-2016-0308.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 117 - 117
1 Nov 2018
Joyce K Isa ILM Fahey R Creemers L Devitt A Pandit A
Full Access

Discogenic low back pain affects 42% of patients suffering low back pain. Degenerative disc disease is described as failure in cellular response to external stresses leading to physiologic dysfunction. Glycosylation patterns of tissues give insights into the spatially and temporally regulated inflammatory and degenerative processes. These glycoconjugates participate in many key biological processes including molecular trafficking and clearance, receptor activation, signal transduction, and immunomodulation. We hypothesise that glycoprofile of the the intervertebral disc(IVD) is temporally and spatially distinct in health and degeneration. The glycoprofile of the IVD has been studied in murine, bovine and ovine models for injury and aging. In this study, healthy(n=2) and degenerated(n=2) human IVD samples received from Utrecht(UU, ND) with ethical approval(NUIG), were compared using lectin histochemistry. The N-glycan profile of human degenerated IVD samples was characterised by high resolution quantitative UPLC-MS. Healthy and degenerated human discs present distinct glycosylation trends intracellularly/extracellularly in annulus fibrosus(AF) and nucleus pulposus(NP) tissue. There are quantitative and spatial differences in glycosylation in healthy and degenerated tissue. These findings are consistent with previous studies of IVD in murine, bovine and ovine models. The human N-glycan profile of degenerated surgical tissues is distinct from other cited tissue profiles such as human plasma5. These studies offer validation of previous animal models of IVD injury and degeneration, demonstrating similar changes in the glycoprofile in both animals and humans. Glycoprofiling may offer insight into disease progression, offering new realms of disease classification in patient specific manner while also elucidating potentials therapeutic targets, inhibiting disease progression.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 28 - 28
1 Nov 2018
Bal Z Kaito T Ishiguro H Korkusuz P Dede E Korkusuz F
Full Access

Sustained release of BMP-2 is reported to be able to reduce the required dose of BMP-2 for bone induction. Nanohydroxyapatite (nHAp) has an osteoinduction capability which is lack in conventional hydroxyapatite. In this study, we combined PLA-PEG with nHAp and investigated the bone regenerative capacity of the newly established composite material of rhBMP-2/PLA-PEG/nHAp in a rat model of spinal fusion. The PLA-PEG was liquidized in acetone and mixed with nHAp and rhBMP-2. The sheet-shaped BMP-2/PLA-PEG (5mg)/nHAp (12.5mg) composites were prepared while evaporating the acetone. The release kinetics of rhBMP-2 from the composite was investigated by ELISA. In vivo bone formation was investigated by posterolateral spinal fusion in rats (the dosage of rhBMP-2; 0µg/ 0.5µg / 3µg). Bone formation was assessed by µCT and histology at post-op. 8 weeks. The composite showed the burst-release in the initial 24 hours (69% of total release) and the subsequent sustained-release for 25 days. According to µCT and histology of the spinal fusion experiment for all groups the bone formation was observed. While no bony bridging was observed in 0 µg and 0.5 µg BMP groups; in 3 µg group bony bridging and fusion were achieved. We developed a new technology for bone regeneration with rhBMP-2/PLA-PEG/nHAp composite. The reduction in the required dose of BMP-2 for bone induction was achieved. This result can be explained by the high bone induction ability of nHAp and sustainable release of BMP from PLA-PEG in the composite.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 279 - 279
1 Jul 2014
Aro H Ahtinen H Kulkova J Lindholm L Eerola E Hakanen A Moritz N Söderström M Saanijoki T Roivainen A
Full Access

Summary

Coagulase-negative staphylococci, including S. epidermidis, have emerged as the leading pathogens of hospital-acquired biomaterial-related infections. These infections can be clinically indolent and challenging also for diagnostic imaging. In the current model of catheter-related infections, 68Ga-labeled Siglec-9 PET/CT imaging was able to detect peri-implant S. epidermidis bone infections.

Introduction

Coagulase-negative staphylococci, including S. epidermidis, have emerged as the leading pathogen of nosocomial (hospital-acquired) biomaterial-related infections, including periprosthetic infections and intravascular catheter-related bloodstream infections. Pathogenic S. epidermidis strains exhibit robust attachment to implant surfaces and subsequent biofilm formation. By nature, the clinical picture of periprosthetic S. epidermidis infections can be indolent with vague signs of infection. These infections are also highly challenging for diagnostic imaging and microbiologic studies. Our recent experimental study of 18F-FDG-PET/CT confirmed that subacute peri-implant S. epidermidis infections, reflecting limited inflammatory reaction, are characterised by low 18F-FDG uptake. Vascular adhesion protein-1 (VAP-1) is an inflammation inducible endothelial protein, which controls leukocyte migration to sites of inflammation and infection. Siglec-9 is a leukocyte ligand of VAP-1. We hypothesised that 68Ga-labeled Siglec-9, developed for PET imaging of inflammation and cancer, could be a novel tracer also for early defection of S. epidermidis peri-implant bone infections.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 90 - 90
11 Apr 2023
Williams R Snuggs J Schmitz T Janani R Basatvat S Sammon C Benz K Ito K Tryfonidou M Le Maitre C
Full Access

Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial carriers subjected to physiological oxygen conditions over a four-week period were investigated. Porcine NC cells were incorporated into three injectable hydrogels: NPgel (a L-pNIPAM-co-DMAc hydrogel), NPgel with decellularized NC-matrix powder (dNCM) and Albugel (an albumin/ hyaluronan hydrogel). The NCs and biomaterials constructs were cultured for up to four weeks under 5% oxygen (n=3 biological repeats). Histological, immunohistochemical and glycosaminoglycans (GAG) analysis were performed to investigate NC viability, phenotype and extracellular matrix synthesis and deposition. Histological analysis revealed that NCs survive in the biomaterials after four weeks and maintained cell clustering in NPgel, Albugel and dNCM/NPgel with maintenance of morphology and low caspase 3 staining. NPgel and Albugel maintained NC cell markers (brachyury and cytokeratin 8/18/19) and extracellular matrix (collagen type II and aggrecan). Whilst Brachyury and Cytokeratin were decreased in dNCM/NPgel biomaterials, Aggrecan and Collagen type II was seen in acellular and NC containing dNCM/NPgel materials. NC containing constructs excreted more GAGs over the four weeks than the acellular controls. NC cells maintain their phenotype and characteristic features in vitro when encapsulated into biomaterials. NC cells and biomaterial construct could potentially become a therapy to treat and regenerate the IVD


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 119 - 119
2 Jan 2024
Tryfonidou M
Full Access

Tryfonidou leads the Horizon 2020 consortium (iPSpine; 2019–2023) bringing a transdisciplinary team of 21 partners together to address the challenges and bottlenecks of iPS-based advanced therapies towards their transition to the clinic. Here, chronic back pain due to intervertebral disc degeneration is employed as a show case. The project develops the iPS-technology and designed smart biomaterials to carry, protect and instruct the iPS cells within the degenerate disc environment. This work will be presented including ongoing activities focus on translating the developed methodology and tools towards clinically relevant animal models. The consortium optimized the protocol for the differentiated iPS-notochordal-like cells (iPS-NLCs) and shortlisted two biomaterials shortlisted based on their physicochemical, cytotoxicity, biomechanical and biocompatibility testing. Both were shown to be safe and have been tested with the progenitors of iPS-NLCs. An advanced platform (e.g., the dynamic loading bioreactor for disc tissue) was used to evaluate their performance: the biomaterials supported the iPS-NLC progenitors after injection into the degenerate disc and seem to also support their maturation towards NLCs. Furthermore, we confirmed the capacity of these cells to survive inside degenerated discs at 30 days upon injection in sheep, whereafter we continued with their evaluation at 3 months post-injection. We achieved full evaluation of the sheep spines, including biomechanical analysis using the portable spine biomechanics tester prior analysis at the macro- and microscopic, and biochemical level