Soft tissue sarcomas (STS) are rare, aggressive malignancies derived from connective tissues such as muscle and fat. Undifferentiated pleomorphic sarcoma (UPS) is one of the most common STS in adults. UPS is an aggressive, highly metastatic sarcoma, and is resistant to chemotherapy. New therapies for UPS are desperately needed. STS have an immune desert tumour immune microenvironment (TIME), characterized by a paucity of tumour infiltrating lymphocytes and subsequent resistance to immunotherapies such as immune checkpoint inhibitors. Strategies capable of creating an immune-rich, inflamed TIME may improve immunotherapy efficacies for sarcoma. Activation of the STING (stimulator of interferon genes) receptor can induce potent innate and adaptive immune responses within immunogenic solid tumours. However, this approach has never been attempted in immune-inert sarcomas. Purpose: To determine the therapeutic anti-tumour effects of STING activation in UPS tumours. We have developed an inducible, immune-competent mouse model of UPS. We evaluated intra-tumoural injection of the murine STING receptor agonist, DMXAA, into UPS-bearing immune-competent mice. DMXAA was injected into palpable UPS tumours of the hindlimb. Tumour volume and
Impaired bone healing biology secondary to soft tissue deficits and chemotherapy contribute to non-union, fracture and infection following limb salvage surgery in Osteosarcoma patients. Approved bone healing augments such as recombinant human bone morphogenetic protein-2 (rhBMP-2) have great potential to mitigate these complications. rhBMP-2 use in sarcoma surgery is limited, however, due to concerns of pro-oncogenic signalling within the tumour resection bed. To the contrary, recent pre-clinical studies demonstrate that BMP-2 may induce Osteosarcoma differentiation and limit tumour growth. Further pre-clinical studies evaluating the oncologic influences of BMP-2 in Osteosarcoma are needed. The purpose of this study is to evaluate how BMP-2 signalling affects Osteosarcoma cell proliferation and metastasis in an active tumour bed. Two Osteosarcoma cell lines (143b and SaOS-2) were assessed for proliferative capacity and invasion. 143b and SaOS-2 cells were engineered to upregulate BMP-2. In vitro proliferation was assessed using a cell viability assay, motility was assessed with a scratch wound healing assay, and degree of osteoblastic differentiation was assessed using qRT-PCR of Osteoblastic markers (CTGF, ALP, Runx-2 and Osx). For in vivo evaluation, Osteosarcoma cells were injected into the intramedullary proximal tibia of immunocompromised (NOD-SCID) mice and local tumour growth and metastases were assessed using weekly
Impaired bone healing biology secondary to soft tissue deficits and chemotherapy contribute to non-union, fracture and infection following limb salvage surgery in Osteosarcoma patients. Approved bone healing augments such as recombinant human bone morphogenetic protein-2 (rhBMP-2) have great potential to mitigate these complications. rhBMP-2 use in sarcoma surgery is limited, however, due to concerns of pro-oncogenic signalling within the tumour resection bed. To the contrary, recent pre-clinical studies demonstrate that BMP-2 may induce Osteosarcoma differentiation and limit tumour growth. Further pre-clinical studies evaluating the oncologic influences of BMP-2 in Osteosarcoma are needed. The purpose of this study is to evaluate how BMP-2 signalling affects Osteosarcoma cell proliferation and metastasis in an active tumour bed. Two Osteosarcoma cell lines (143b and SaOS-2) were assessed for proliferative capacity and invasion. 143b and SaOS-2 cells were engineered to upregulate BMP-2. In vitro proliferation was assessed using a cell viability assay, motility was assessed with a scratch wound healing assay, and degree of osteoblastic differentiation was assessed using qRT-PCR of Osteoblastic markers (CTGF, ALP, Runx-2 and Osx). For in vivo evaluation, Osteosarcoma cells were injected into the intramedullary proximal tibia of immunocompromised (NOD-SCID) mice and local tumour growth and metastases were assessed using weekly
Aim. Multispecies biofilms are associated with difficult periprosthetic joint infections (PJI), particularly if they have different antibiotic sensitivities. We aimed to determine if we could generate and kill a multispecies biofilm consisting of a Gram negative and Gram positive pathogen in-vitro with antibiotic loaded calcium sulfate beads containing single or combination antibiotics. Methods. To establish whether we could co-culture mixed species biofilms various combinations of Pseudomonas aeruginosa (PA), Enterococcus faecalis (EF), Staphylococcus aureus (SA) and Enterobacter faecalis (EF) were grown together on 316L stainless steel coupons and agar plates. Based on this screen we focused on PA + EF and challenged them with high purity calcium sulfate beads (Stimulan Rapid Cure) loaded with vancomycin (V), alone tobramycin (T) alone or vancomycin and tobramycin in combination (V+T).
Bone metastases are the most common cause of cancer-related pain and often lead to other complications such as pathological fractures and spinal cord compression. Bisphosphonates (BP) are a class of potent anti-resorptive agents commonly prescribed to retard osteoporosis progression. Interestingly, BP may have indirect anti-tumour properties through negative effects on macrophages, osteoclasts, endothelial cells and their ability to suppress matrix metalloproteinase (MMP) activity. Currently, the use of bisphosphonates for cancer therapy is generally restricted to high dose systemic delivery. The purpose of this study was to investigate the effects of direct local delivery of Zoledronate at the metastatic site in a mouse model of breast cancer metastasis to bone. Seven days following intra-tibial inoculation with MDA-MB-231 (N = 1× 105) breast cancer cells in athymic mice, the experimental group (N = 11) was treated by direct infusion of 2µg of Zoledronate into the tibial lesion (three times/week for three weeks) and compared to vehicle-treated mice (N = 5). The formation of bone metastases and growth of the lesions were followed up by weekly
Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in vivo study was to compare the efficacy of vancomycin powder with vancomycin-eluting calcium sulphate beads in preventing PJI due to delayed inoculation. A mouse model of PJI of the knee was used. Mice were randomized into groups with intervention at the time of surgery (postoperative day (POD) 0): a sterile control (SC; n = 6); infected control (IC; n = 15); systemic vancomycin (SV; n = 9); vancomycin powder (VP; n = 21); and vancomycin bead (VB; n = 19) groups. Delayed inoculation was introduced during an arthrotomy on POD 7 with 1 × 105 colony-forming units (CFUs) of a bioluminescent strain of Aims
Methods