Stem cells represent an exciting
Osteoarthritis (OA) is a painful and disabling chronic condition that constitutes a major challenge to health care worldwide. There is currently no cure for OA and the analgesic pharmaceuticals available do not offer adequate and sustained pain relief, often being associated with significant undesirable side effects. Another disease associated with degenerating joints is Intervertebral disc degeneration (IVDD) which is a leading cause of chronic back pain and loss of function. It is characterized by the loss of extracellular matrix, specifically proteoglycan and collagen, tissue dehydration, fissure development and loss of disc height, inflammation, endplate sclerosis, cell death and hyperinnervation of nociceptive nerve fibers. The adult human IVD seems incapable of intrinsic repair and there are currently no proven treatments to prevent, stop or even retard disc degeneration. Fusion is currently the most common surgical treatment of symptomatic disc disease. However, radiographic follow-up studies have revealed that many patients develop adjacent segment disc degeneration due to altered spine biomechanics. The development of safe and efficacious disease modifying OA drugs (DMOADs) that treat pain and inflammation in joints will improve our ability to control the disease. I addition, a biologic treatment of IVDD is desirable. This presentation will provide an overview of recent advances and future prospects of a multimodal biologic treatment of OA, and IVDD. We will focus on Link N, a naturally occurring peptide representing the N terminal region of link protein and the first 1–8 residues of Link N (short Link N, sLN) responsible for the
In recent years, novel therapies for intervertebral disc (IVD) regeneration have been developed that are based on the delivery of cells, biomaterials or bioactive molecules. The efficacy of these
Osteoarthritis (OA) of the spine and diarthrodial joints is by far the most common cause of chronic disability in people over 50 years of age. The disease has a striking impact on quality of life and represents an enormous societal and economic cost, a burden that will increase greatly as populations age. OA is a complex condition with broad pathology. Damage to the articular cartilage is a consistent feature, accompanied by changes to the subchondral bone and synovium. Progression of the disease involves further degeneration of the articular cartilage, damage to the underlying bone and morphological changes that include subchondral bone thickening, development of cysts, osteophytes and inflammation of the synovium. Enhanced production of proinflammatory cytokines and matrix metalloproteinases accelerates degradation of the articular cartilage. It is striking that no approved pharmacological intervention,
Osteoarthritis (OA) is the most common degenerative joint disease causing joint immobility and chronic pain. Treatment is mainly based on alleviating pain and reducing disease progression. During OA progression the chondrocyte undergoes a hypertrophic switch in which extracellular matrix (ECM) -degrading enzymes are released, actively degrading the ECM. However, cell