Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 71 - 71
1 Aug 2013
Young P Bell S Mahendra A
Full Access

The surgical management of musculoskeletal tumours is a challenging problem, particularly in pelvic and diaphyseal tumour resection where accurate determination of bony transection points is extremely important to optimise oncologic, functional and reconstructive options. The use of computer assisted navigation in these cases could improve surgical precision. We resected musculoskeletal tumours in fifteen patients using commercially available computer navigation software (Orthomap 3D). Of the eight pelvic tumours, three underwent biological reconstruction with extra corporeal irradiation; three endoprosthetic replacement (EPR) and two required no bony reconstruction. Four diaphyseal tumours had biological reconstruction. Two patients with proximal femoral sarcoma underwent extra-articular resection and EPR. One soft tissue sarcoma of the adductor compartment involving the femur was resected with EPR. Histological examination of the resected specimens revealed tumour free margins in all cases. Post-operative radiographs and CT show resection and reconstruction as planned in all cases. Several learning points were identified related to juvenile bony anatomy and intra-operative registration. The use of computer navigation in musculoskeletal oncology allows integration of local anatomy and tumour extent to identify resection margins accurately. Furthermore, it can aid in reconstruction following tumour resection. Our experience thus far has been encouraging


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 111 - 111
1 Jan 2013
Young P Bell S Mahendra A
Full Access

Background. The surgical management of musculoskeletal tumours is a challenging problem, particularly in pelvic and diaphyseal tumour resection where accurate determination of bony transection points is extremely important to optimise oncologic, functional and reconstructive options. The use of computer assisted navigation in these cases could improve surgical precision. Materials and methods. We resected musculoskeletal tumours in fifteen patients using commercially available computer navigation software (Orthomap 3D). Results. Of the eight pelvic tumours, three underwent biological reconstruction with extra corporeal irradiation, three endoprosthetic replacement (EPR) and two required no bony reconstruction. Four diaphyseal tumours had biological reconstruction. Two patients with proximal femoral sarcoma underwent extra-articular resection and EPR. One soft tissue sarcoma of the adductor compartment involving the femur was resected with EPR. Histological examination of the resected specimens revealed tumour free margins in all cases. Post-operative radiographs and CT show resection and reconstruction as planned in all cases. Several learning points were identified related to juvenile bony anatomy and intra-operative registration. Discussion. The use of computer navigation in musculoskeletal oncology allows integration of local anatomy and tumour extent to identify resection margins accurately. Furthermore, it can aid in reconstruction following tumour resection. Our experience thus far has been encouraging


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 37 - 37
1 Nov 2016
Gupta S Kafchinski L Gundle K Saidi K Griffin A Ferguson P Wunder J
Full Access

Biological reconstruction techniques after diaphyseal tumour resection have increased in popularity in recent years. High complication and failure rates have been reported with intercalary allografts, with recent studies questioning their role in limb-salvage surgery. We developed a technique in which large segment allografts are augmented with intramedullary cement and fixed using compression plating. The goal of this study was to evaluate the survivorship, complications and functional outcomes of these intercalary reconstructions. Forty-two patients who had reconstruction with an intercalary allograft following tumour resection between 1989 and 2010 were identified from our prospectively collected database. Allograft survival, local recurrence-free, disease-free and overall survival were assessed using the Kaplan-Meier method. Patient function was assessed using the Musculoskeletal Tumour Society (MSTS) scoring system and the Toronto Extremity Salvage Score (TESS). The 23 women and 19 men had a mean age of 33 years (14–77). The most common diagnoses were osteosarcoma (n=16) and chondrosarcoma (n=9). There were 9 humerus, 18 femur and 15 tibia reconstructions. At a mean follow-up of 95 months (5–288), 31 patients were alive without disease, 10 were dead of disease and 1 was deceased of other causes. There were 4 local recurrences and 11 patients developed metastatic disease. 5-year local recurrence free survival was 92%, 5-year disease-free survival was 70% and overall survival was 75%. Fourteen of 42 patients (33%) experienced complications: 5 wound healing complications, 4 infections, 2 non-unions, 2 fractures and 1 nerve palsy. Four allografts (9.5%) were revised for complications and 2 (5%) for local recurrence. Mean allograft survival was 85 months (4–288). Mean time to union was 8.2 (3–36) months for the proximal osteotomy site and 8.1 (3–23) months for the distal osteotomy site. The mean score for MSTS 87 was 29.4 (+/− 4.4), MSTS 93 was 83.7 (+/−14.8) and TESS was 81.6 (+/−16.9). An intercalary allograft augmented with intramedullary cement and compression plate fixation provides a reliable and durable method of reconstruction after tumour resection. Complication rates are comparable to the literature and are associated with high levels of patient function and satisfaction


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_10 | Pages 28 - 28
1 Jul 2014
Jacobs N Sutherland M Stubbs D McNally M
Full Access

The purpose of this study is to provide a systematic review of the literature and assess outcome of our experience of Ilizarov Bone Transport in reconstruction for primary malignant tumours of bone (PMTB). A systematic review of the literature for reported cases of primary reconstruction of PMTB using distraction osteogenesis was performed. All cases of distraction osteogenesis for primary reconstruction of PMTB in our institution were reviewed. Outcome was determined from retrospective review of case notes and radiology. Patients were contacted to define final status. There are few cases of primary reconstruction of PMTB using Ilizarov method in the literature. Most reports relate to benign tumours or reconstruction of secondary deformities or non-union after tumour resection. At our institution we have treated 7 patients with bone defects resulting from excision of a PMTB. Mean age was 42.1 years (23–48). Tumours occurred in the tibia in 4 cases and the femur in 3 cases. Histologic diagnosis was chondrosarcoma in 3, malignant fibrous histiocytoma in 2, adamantinoma in 1 and malignant intraosseous nerve sheath tumour in 1. All patients were assessed through the hospital sarcoma board and shown to have isolated bone lesions without metastases. Mean bone defect after resection was 13.1 cm (10–17). Mean frame time was 13.6 months (5–23). Mean follow-up was 46 months (15–137). Complications included pin infection, docking site non-union, premature fusion of corticotomy, soft tissue infection and minor varus deformity. There was one local recurrence of tumour at five months after resection, resulting in a through hip disarticulation. The other cases remain tumour-free with united, well-aligned bones and acceptable long-term function. PMTB is rare and poses a major reconstructive dilemma. Distraction osteogenesis provides an effective method of biologic reconstruction in selected cases, and good outcomes can be achieved


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 11 - 11
1 May 2012
Stalley P
Full Access

Prior to the 1970s, almost all bone sarcomas were treated by amputation. The first distal femoral resection and reconstruction was performed in 1973 by Dr Kenneth C Francis at the Memorial Sloan-Kettering Cancer Centre in New York. Since that time, limb-sparing surgery for primary sarcoma has become the mainstay of sarcoma surgery throughout the world. Initially, the use of mega-prostheses of increasing complexity, involving all the major long bones and both pelvic and shoulder girdles, was popularised. In the early 1980s, wide use of massive allograft reconstructions became widespread in both Europe and in multiple centres in the USA and UK. Since that time, increasing complexity in the design of prostheses has allowed for increasing functional reconstructions to occur, but the use of allograft has become less popular due to the development of late graft failures of patients survive past ten years. Fracture rates approaching 50% at 10 years are reported, and thus, other forms of reconstruction are being sought. Techniques of leg lengthening, and bone docking procedures to replace segmental bone loss to tumour are now employed, but the use of biological vascularised reconstructions are becoming more common as patient survivorship increases with children surviving their disease. The use of vascularised fibular graft, composite grafts and re-implantation of extra-corporeally irradiated bone segments are becoming more popular. The improvement in survivorship brought about the use of chemotherapy is producing a population of patients with at least a 65% ten year survivorship, and as many of these patients are children, limb salvage procedures have to survive for many decades. The use of growing prostheses for children have been available for some 25 years, first commencing in Stanmore, UK, with mechanical lengthening prostheses. Non-invasive electro-magnetic induction coil mechanisms are now available to produce leg lengthening, with out the need for open surgery. Whilst many of these techniques have great success, the area of soft tissue attachment to metallic prostheses has not been solved, and reattachment of muscles is of great importance, of course, for return of function. There are great problems in the shoulder joints where sacrifice of rotator cuff muscles is necessary in obtaining adequate disease clearance at the time of primary resection, and a stable shoulder construct, with good movement, has yet to emerge. Similar areas of great difficultly remain the peri-acetabular and sacro-iliac resections in the pelvis. Perhaps the real future of the art of limb salvage will be in the reconstruction of failed major joint replacements where there is great loss of bone stock, and already massive tumour prostheses are providing a salvage pathway for failed standard joint replacement. The final future for limb salvage, however, may not rest with increasing surgical complexity and innovation, but with the development of molecular biology and specific targeted treatments, according to the cytogenetics of a particular tumour. We are on the threshold of yet another quantum change in the approach to cancer management; just as chemotherapy brought a tremendous change in the 1970s, molecular biology is the frontier to make much of the current limb salvage surgery that is performed redundant