Objectives. Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial carriers subjected to physiological oxygen conditions over a four-week period were investigated. Methodology. Porcine NC cells were incorporated into three injectable hydrogels: NPgel (a L-pNIPAM-co-DMAc hydrogel), NPgel with decellularized NC-matrix powder (dNCM) and Albugel (an albumin/ hyaluronan hydrogel). The NCs and biomaterials constructs were cultured for up to four weeks under 5% oxygen (n=3
The aim of this study is to clarify the implication of ciliary pathway on the onset of the spinal curvature that occurs in Adolescent Idiopathic Scoliosis (AIS) patients through functional studies of two genes: POC5 and TTLL11. Since the genetic implication for AIS is accepted, many association and candidate gene analysis revealed the implication of ciliary genes. The characterisation of these two proteins was assessed by qPCR, WB and immunofluorescence in vitro using control cells and cells derived from AIS patients. The impact of genetic modification of these genes on the functionality of the proteins in vitro and in vivo was analysed in zebrafish model created by CRISPR/Cas9 using microCT and histologic analysis. Our study revealed that mutant cells, for both gene, were less ciliated and the primary cilia was significantly shorter compared to control cells. We also observed a default in cilia glutamylation by immunofluorescence and Western Blot. Moreover, we observed in both zebrafish model, a 3D spine curvature similar to the spinal deformation in AIS. Interestingly, our preliminary results of immunohistology showed a retinal defect, especially at the cone cell layer level. This study strongly supports the implication of the ciliary pathway in the onset of AIS and this is the first time that a mechanism is described for AIS. Indeed, we show that shorter cilia could be less sensitive to environmental factors due to lower glutamylation and result in altered signalling pathway. Identifying the
Background. FORECAST is a prospective longitudinal cohort study exploring mechanism-based prognostic factors for pain persistence in sciatica. Here, we share an update on this largest deeply-phenotyped primary care sciatica cohort. Methods/results. Our cohort includes 180 people with sciatica (score >4 on Stynes’ Sum Score), aged 18–85, within 3 months of symptom onset. Psychosocial factors, self-reported sensory profiling, clinical examination, quantitative sensory testing (QST),
Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive. Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.Aims
Methods
This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD). The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.Aims
Methods
To investigate the correlations among cytokines and regulatory T cells (T-regs) in ankylosing spondylitis (AS) patients, and their changes after anti-tumour necrosis factor-α (TNF-α) treatment. We included 72 AS patients with detailed medical records, disease activity score (Bath Ankylosing Spondylitis Disease Activity Index), functional index (Bath Ankylosing Spondylitis Functional Index), and laboratory data (interleukin (IL)-2, IL-4, IL-10, TNF-α, interferon (IFN)-γ, transforming growth factor (TGF)-β, ESR, and CRP). Their peripheral blood mononuclear cells (PBMCs) were marked with anti-CD4, anti-CD25, and anti-FoxP3 antibodies, and triple positive T cells were gated by flow cytometry as T-regs. Their correlations were calculated and the changes after anti-TNF-α therapy were compared.Aims
Methods
Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.Aims
Methods
CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry.Aims
Methods
This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis.Aims
Methods
In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.Aims
Methods
The aim of this study was to determine whether early surgical treatment results in better neurological recovery 12 months after injury than late surgical treatment in patients with acute traumatic spinal cord injury (tSCI). Patients with tSCI requiring surgical spinal decompression presenting to 17 centres in Europe were recruited. Depending on the timing of decompression, patients were divided into early (≤ 12 hours after injury) and late (> 12 hours and < 14 days after injury) groups. The American Spinal Injury Association neurological (ASIA) examination was performed at baseline (after injury but before decompression) and at 12 months. The primary endpoint was the change in Lower Extremity Motor Score (LEMS) from baseline to 12 months.Aims
Methods
Study purpose and background. Novel regenerative therapies have the potential to restore function and relieve pain in patients with low back pain (LBP) caused by intervertebral disc (IVD) degeneration. We have previously shown that stimulation of adipose-derived stem cells (ASCs) with growth differentiation factor-6 (GDF6) promotes differentiation into nucleus pulposus (NP) cells of the IVD, which have potential for IVD regeneration. We have also shown that GDF6 stimulation activates the Smad1/5/8 and ERK1/2 signalling cascades. The aim of this study was to progress our understanding of the immediate/early response mechanisms in ASCs (N=3) which may direct GDF6-induced differentiation. Methods and results. RNAseq was used to perform transcriptome-wide analysis across a 12-hour time course, post-stimulation. Gene ontology analysis revealed greater transcription factor and
Purpose and Background. The intervertebral disc is constantly subjected to forces generated by movement. But degeneration can disrupt normal biomechanics, generating uneven and complex loading patterns. Evidence suggests that these forces are converted into voltages through different mechanisms, such as streaming potentials. This implicates voltage-gated ion channels in the
Background. Patients with Neck and/or Low Back Pain (NLBP) constitute a heterogeneous group with the prognosis and precise mix of factors involved varying substantially between individuals. This means that a one-size-fits-all approach is not recommended, but methods to tailor treatment to the individual needs are still relatively under-developed. Moreover, the fragmentation of disciplines involved in its study hampers achieving sound answers to clinical questions. Data mining techniques open new horizons by combining data from existing datasets, in order to select the best treatment at each moment in time to a patient based on the individual characteristics. Method. Within the Back-UP project (H2020 #777090) a multidisciplinary consortium is creating a prognostic model to support more effective and efficient management of NLBP, based on the digital representation of multidimensional clinical information. Patient-specific models provide a personalized evaluation of the patient case, using multidimensional health data from the following sources: (1) psychological, behavioral, and socioeconomic factors, (2)
Background:. Low back pain (LBP) is the most common symptom encountered by osteopaths in the UK and affects a third of the UK population each year. Guidelines recommend using the biopsychosocial (BPS) model for non-specific LBP but it remains unclear what the BPS model actually is and how it applies in osteopathy. The aim of this study was to define the factors included in a BPS approach for non-specific LBP in a manual therapy using a systematic search and scoping review. Methods:. An online search was performed on seven electronic databases. Guidelines and systematic reviews published after 2004 were included. 10% of the articles randomly selected were analysed by second reviewer to assess consistency of information extraction. Disagreements were discussed between the two reviewers. Mediation from the third author was not required. Results:. A total of 539 articles were identified. 37 articles were included: 13 guidelines and 24 systematic reviews. 70 BPS factors were reported, 15 were excluded, resulting in 55 BPS factors identified. The BPS model is helping clinicians to be more aware of the importance of the patients' context in their pain experience and the risk of them developing chronic pain. Psychosocial factors were identified as better predictors of poor recovery than examination findings. Out of the 55 factors drawn from the literature that are predictors of poor recovery, 13 were
Introduction. Several disorders have been associated with genetic variants. Copy number variations (CNVs) are documented micro DNA insertions and deletions that may be ten times more frequent than point mutations. We undertook a genome-wide scan to find CNVs associated with adolescent idiopathic scoliosis (AIS). Methods. 879 white individuals with AIS severe spine curvatures and 1486 white controls were evaluated for CNVs with the Affymetrix 6.0 HUSNP array. After implementation of quality filters, data were quantile normalised. Copy number analysis was done with Helix Tree (Golden Helix, Bozeman, MT, USA). The copy number segments were measured with the Golden Helix's univariate segmentation algorithm. Statistically different segments were extracted with mean Log2 ratio intensity for that segment to highlight deletions, neutrals, and duplications. We then undertook association analysis on those segments. A p value of less than 10–7 was regarded as significant. Results. We recorded 143 significant segments or regions associated with AIS. 94 of these regions showed gains of copy whereas 49 had deletions. 63 of these significant regions map to known genes.
Psychoeducative prehabilitation to optimize surgical outcomes is relatively novel in spinal fusion surgery and, like most rehabilitation treatments, they are rarely well specified. Spinal fusion patients experience anxieties perioperatively about pain and immobility, which might prolong hospital length of stay (LOS). The aim of this prospective cohort study was to determine if a Preoperative Spinal Education (POSE) programme, specified using the Rehabilitation Treatment Specification System (RTSS) and designed to normalize expectations and reduce anxieties, was safe and reduced LOS. POSE was offered to 150 prospective patients over ten months (December 2018 to November 2019) Some chose to attend (Attend-POSE) and some did not attend (DNA-POSE). A third independent retrospective group of 150 patients (mean age 57.9 years (SD 14.8), 50.6% female) received surgery prior to POSE (pre-POSE). POSE consisted of an in-person 60-minute education with accompanying literature, specified using the RTSS as psychoeducative treatment components designed to optimize cognitive/affective representations of thoughts/feelings, and normalize anxieties about surgery and its aftermath. Across-group age, sex, median LOS, perioperative complications, and readmission rates were assessed using appropriate statistical tests.Aims
Methods
Background. While the human embryonic, foetal and juvenile intervertebral disc (IVD) is composed of large vacuolated notochordal cells, these morphologically distinct cells are lost with skeletal maturity being replaced by smaller nucleus pulpous cells. Notochordal cells are thought to be fundamental in maintaining IVD homeostasis and, hence, their loss in humans may be a key initiator of degeneration, leading ultimately to back pain. Therefore, it is essential to understand the human notochordal cell phenotype to enable the development of novel
Background. Signalling by growth differentiation factor 6 (GDF6/BMP13) has been implicated in the development and maintenance of healthy NP cell phenotypes and GDF6 mutations are associated with defective vertebral segmentation in Klippel-Feil syndrome. GDF6 may thus represent a promising
This article reviews the current knowledge of
the intervertebral disc (IVD) and its association with low back
pain (LBP). The normal IVD is a largely avascular and aneural structure
with a high water content, its nutrients mainly diffusing through
the end plates. IVD degeneration occurs when its cells die or become
dysfunctional, notably in an acidic environment. In the process
of degeneration, the IVD becomes dehydrated and vascularised, and
there is an ingrowth of nerves. Although not universally the case,
the altered physiology of the IVD is believed to precede or be associated
with many clinical symptoms or conditions including low back and/or
lower limb pain, paraesthesia, spinal stenosis and disc herniation. New treatment options have been developed in recent years. These
include