Understanding the long-term effects of total knee arthroplasty (TKA) on joint kinematics is vital to assess the success of the implant design and surgical procedure. However, while in vitro cadaveric studies quantifying post-operative biomechanics primarily reflect joint behaviour immediately after surgery,. 1. in vivo studies comprising of follow-up TKA patients often reflect joint behaviour a few months after surgery. 2. Therefore, the aim of this cadaveric study was to explore the long-term effects of TKA on tibiofemoral kinematics of a donor specimen, who had already undergone bilateral TKA, and compare them to post-operative kinematics reported in the literature. Two fresh-frozen lower limbs from a single donor (male, age: 83yr, ht: 1.83m, wt: 86kg), who had undergone bilateral TKA (Genesis II, Smith&Nephew, Memphis, USA) 19 years prior to his demise, were obtained following ethical approval from the KU Leuven institutional board. The specimens were imaged using computed tomography (CT) and tested in a validated knee simulator. 3. replicating active squatting and varus-valgus laxity tests. Tibiofemoral kinematics were recorded using an optical motion capture system and compared to various studies in the literature using the same implant – experimental studies based on cadaveric specimens (CAD). 1,4. and an artificial specimen (ART). 5. , and a computational study (COM). 6. . Maximum tibial abduction during laxity tests for the left leg (3.54°) was comparable to CAD (3.30°), while the right leg exhibited much larger joint laxity (8.52°). Both specimens exhibited valgus throughout squatting (left=2.03±0.57°, right=5.81±0.19°), with the change in tibial abduction over the range of flexion (left=1.89°, right=0.64°) comparable to literature (CAD=1.28°, COM=2.43°). The left leg was externally rotated (8.00±0.69°), while the right leg internally rotated (−15.35±1.50°), throughout squatting, with the change in tibial rotation over the range of flexion (left=2.61°, right=4.79°) comparable to literature (CAD=5.52°, COM=4.15°). Change in the femoral anteroposterior translation over the range of flexion during squatting for both specimens (left=14.88mm, right=6.76mm) was also comparable to literature (ART=13.40mm, COM=20.20mm). Although TKA was reportedly performed at the same time on both legs of the donor by the same surgeon, there was a stark difference in their post-operative joint kinematics. A larger extent of intraoperative collateral ligament release could be one of the potential reasons for higher post-operative joint laxity in the right leg. Relative changes in post-operative tibiofemoral kinematics over the range of squatting were similar to those reported in the literature. However, differences between absolute magnitudes of joint kinematics obtained in this study and findings from the literature could be attributed to different surgeons performing TKA, with presumable variations in alignment techniques and/or patient specific instrumentation, and the slightly dissimilar ranges of knee flexion during squatting. In conclusion, long-term kinematic effects of TKA quantified using in vitro testing were largely similar to the immediate post-operative kinematics reported in the literature; however, variation in the behaviour of two legs from the same donor suggested that intraoperative surgical alterations might have a greater effect on joint kinematics over time