Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 68 - 68
1 Nov 2018
Sánchez-Abella L Loinaz I Grande H Dupin D
Full Access

In 2011, approximately 1.6 million total hip arthroplasties (THAs) were conducted in 27 of the 34 member countries in the Organization for Economic Cooperation and Development (OECD) However, approximately 10–15% of patients still require revision surgery every year. Therefore, new technologies are required to increase the life-spam of the prosthesis from the current 10–15 years to at least 20–30 years. Our strategy focuses on surface modification of the bearing materials with a hydrophilic coating to improve their wear behaviour. These coatings are biocompatible, with high swelling capacity and antifouling properties, mimicking the properties of natural cartilage, i.e. wear resistance with permanent hydrated layer that prevents prosthesis damage. Clear beneficial advantages of this coating have been demonstrated in different conditions and different materials, such as UHMWPE, PEEK, CrCo, Stainless steel, ZTA and Alumina. Using routine tribological experiments, the wear for UHMWPE substrate was decreased by 75% against alumina, ZTA and stainless steel. For PEEK-CFR substrate coated, the amount of material lost against ZTA and CrCo was at least 40% lower. Further experiments on hip simulator adding abrasive particles (1-micron sized aluminium particles) during 3 million cycles, on a total of 6 million, showed a wear decreased of around 55% compared to uncoated UHMWPE and XLPE. In conclusion, CIDETEC‘s coating technology is versatile and can be adapted to protect and improve the tribological properties of different types of surfaces used for prosthesis, even in abrasive conditions


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 35 - 35
1 Jan 2019
Zaribaf F Gill HR Pegg E
Full Access

Ultra-high molecular weight polyethylene (UHMWPE) is a commonly used as bearing material in joint replacement devices. UHMWPE implants can be hard to see on a standard X-ray because UHMWPE does not readily attenuate X-rays. Radiopaque UHMWPE would enable direct imaging of the bearing both during and after surgery, providing in vivo assessment of bearing position, dislocation or fracture, and potentially a direct measure of wear. The X-ray attenuation of UHMWPE was increased by diffusing an FDA approved contrast agent (Lipiodol) into UHMWPE parts (Zaribaf et al, 2018). The aim of this study was to evaluate the optimal level of radiopacity for a UHMWPE bearing. Samples of un-irradiated medical grade UHMWPE (GUR 1050) were machined into 4mm standard medium Oxford Unicompartmental bearings. Samples were immersed in Lipiodol Ultra Fluid (Guerbert, France) at elevated temperatures (85 °C, 95 °C and 105 °C) for 24 h to achieve three different levels of radiopacity. A phantom set-up was used for X-ray imaging; the phantom contained two perspex rods to represent bone, with the metallic tibial tray and polyethylene bearing fixed to the end of one rod and the metallic femoral component fixed to the other rod. Radiographs of the samples were taken (n=5) with the components positioned in full extension. To ensure consistency, the images of all the samples were taken simultaneously alongside an untreated part. The results of our ongoing study demonstrate that the radiopacity of UHMWPE can be enhanced using Lipiodol and the parts are visible in a clinical radiographs. The identification of the optimal treatment from a clinical perspective is ongoing; we are currently running a survey with clinicians to find the consensus on the optimal radiopacity taking into account the metallic components and alignment. Future work will involve a RSA study to assess the feasibility of measuring wear directly from the bearing


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 11 - 11
1 Apr 2017
Grupp T Fritz B Kutzner I Bergmann G Schwiesau J
Full Access

Background. Wear simulation in total knee arthroplasty (TKA) is currently based on the most frequent activity – level walking. A decade ago multi-station knee wear simulators were introduced leading to optimisations of TKA designs, component surface finish and bearing materials. One major limitation is that current wear testing is mainly focused on abrasive-adhesive wear and in vitro testing does not reflect “delamination” as an essential clinical failure mode. The objective of our study was to use a highly demanding daily activities wear simulation to evaluate the delamination risk of polyethylene materials with and without vitamin E stabilisation. Methods. A cruciate retaining fixed bearing TKA design (Columbus CR) with artificially aged polyethylene knee bearings (irradiation 30±2 kGy) blended with and without 0.1% vitamin E was used under medio-lateral load distribution and soft tissue restrain simulation. Daily patient activities with high flexion (2×40% stairs up and down, 10% level walking, 8% chair raising, 2% deep squatting) were applied for 5 million cycles. The specimens were evaluated for gravimetric wear and analysed for abrasive-adhesive and delamination wear modes. Results. The total amount of gliding surface wear was 28.7±1.9 mg for the vitamin E stabilised polyethylene compared to 355.9±119.8 mg for the standard material. The combination of artificial ageing and high demanding knee wear simulation leads to visible signs of delamination in the articulating bearing areas in vitro. Conclusion. To evaluate Vitamin E stabilised polyethylenes in regard to ageing and wear behaviour in vitro, conditions are simulated to create clinical relevant failure modes in the reference material


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 27 - 27
1 Apr 2017
Adesina T Ajami S Coathup M Blunn G
Full Access

Background. Stress shielding and wear induced aseptic loosening cause failure in arthroplasty surgery. To improve survivorship, the use of a low modulus, low wearing biomaterial may be a suitable alternative to hard bearing prostheses, such as cobalt chromium (CoCr). There has been considerable research interest in the use of polyetheretherketone (PEEK) based on observed clinical success especially in spinal surgery. This study investigated the wear performance of PEEK, carbon reinforced PEEK (CFR-PEEK) and acetal as bearing materials in an all polymer total knee arthroplasty (TKA) using a unidirectional pin on plate test. Methods. The following material combinations were tested: PEEK vs. UHMWPE, CFR-PEEK vs. UHMWPE, PEEK vs. PEEK, CFR-PEEK vs. PEEK, CoCr vs. UHMWPE, PEEK vs. XLPE, CFR-PEEK vs. CFR-PEEK, PEEK vs. Acetal, Acetal vs. XLPE and CoCr vs. XLPE.Tribological couples tested (Pin vs. Plate) Using a previously validated modification of ASTM F732, 20mm diameter spherically ended pins with a radius of 25mm were articulated against 40mm diameter plates. A load of 1000N was applied to generate a contact stress of about 70MPa similar to contact stresses previously reported in the knee. The lubricant used was 25% newborn calf serum containing 0.3% sodium azide to retard bacteria growth and 20mM EDTA to prevent calcium deposition. Three repeats of pin on plate combinations (including 2 passive soak controls) were tested for 2 million cycles at a cycle frequency of 1Hz and a stroke length of 10 mm. Gravimetric wear was analysed every 250,000 cycles and results converted to volumetric wear using material density. Results. All CFR-PEEK articulations were stopped due to excessive wear of the counter-surfaces. Results showed a linear wear rate of UHMWPE and XLPE plates over the test period. PEEK vs. XLPE showed similar wear rate to metal on polyethylene (MoP) bearings. Conclusion. At stresses representative of the knee, PEEK pins when articulated against XLPE plates generated volumetric wear similar to that noted in MoP bearings


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 35 - 35
1 Oct 2016
Asif I Williams S Fisher J Al-Hajjar M Anderson J Tipper J
Full Access

Wear particles produced by alumina ceramic-on-ceramic (CoC) bearings cause a minimal immunological response with low cytotoxicity and inflammatory potential. 1, 2. However, more comprehensive immunological studies are yet to be completed for the composite CoC (zirconia-toughened, platelet reinforced alumina) hip replacements due to difficulties in isolating the very low volume of clinically relevant wear debris generated by such materials in vitro. The aim of this study was to compare the cytotoxic effects of clinically relevant cobalt chromium (CoCr) nano-particles with commercial composite ceramic particles. Composite ceramic particles (commercial BIOLOX® delta powder) were obtained from CeramTec, Germany and clinically relevant CoCr wear particles were generated using a six station pin-on-plate wear simulator. L929 fibroblast cells were cultured with 50µm. 3. of CoCr wear debris or composite ceramic particles at low to high volumes ranging from 500µm. 3. –0.5µm. 3. per cell and the cyctotoxic effects of the particles were assessed over a period of 6 days using the ATP-Lite™ cell viability assay. The composite ceramic particles were bimodal in size (0.1–2µm & 30–100nm) and showed mild cytotoxic effects when compared with equivalent particle volumes (50µm. 3. ) of clinically relevant CoCr nano-particles (10–120nm). The CoCr nano-particles had significant cytotoxic effects from day 1, whereas the composite ceramic particles only showed cytotoxic effects at particle concentrations of 50 and 500µm. 3. after 6 days. The increased cytotoxicity of the clinically relevant CoCr nano-particles may have been attributed to the release of Co and Cr ions. This study demonstrated the potential cytotoxic effects of model ceramic particles at very high volume concentrations, but it is unlikely that such high particle volumes will be experienced routinely in vivo in such low wearing bearing materials. Future work will investigate the longer-term effects on genotoxicity and oxidative stress of low volumes of clinically-relevant generated BIOLOX® delta ceramic wear particles


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 58 - 58
1 Jan 2017
Grupp T Schierjott R Pfaff A Tozzi G Schwiesau J Giurea A Utzschneider S
Full Access

Knee arthroplasty with a rotating hinge knee (RHK) prosthesis has become an important clinical treatment option for knee revisions and primary patients with severe varus or valgus deformities and instable ligaments. The rotational axle constraints the anterior-posterior shear and varus-valgus moments, but currently used polyethylene bushings may fail in the mid-term due to insufficient creep and wear resistance of the material. Due to that carbon-fibre-reinforced (CFR) PEEK as an alternativ bushing material with enhanced creep, wear and fatigue behaviour has been introduced in a RHK design [Grupp 2011, Giurea 2014]. The objective of our study was to compare results from the pre-clinical biotribological characterisation to ex vivo findings on a series of retrieved implants. In vitro wear simulation according to ISO 14243-1 was performed on rotating hinge knee devices (EnduRo® Aesculap, Germany) made out of cobalt-chromium and of a ZrN multi-layer ceramic coating for 5 million cycles. The mobile gliding surfaces were made out of polyethylene (GUR 1020, β-irradiated 30 ± 2 kGy). For the bushings of the rotational and flexion axles and the flanges a new bearing material based on CFR-PEEK with 30% PAN fiber content was used. Analysis of 12 retrieved EnduRo. ®. RHK systems in cobalt-chromium and ZrN multi-layer in regard to. -. loosening torques in comparison with initial fastening torques. -. Optical, DSLR camera and stereo light microscope analysis. -. distinction between different wear modes and classification with a modified HOOD-score. -. SEM & EDX of representative samples. -. surface roughness and depth profilometry. with a focus on the four CFR-PEEK components integrated in the EnduRo. ®. RHK design. For the rotating hinge knee design with flexion bushing and flanges out of CFR-PEEK the volumetric wear rates were 2.3 ± 0.48 mm. 3. /million cycles (cobalt-chromium) and 0.21 ± 0.02 mm. 3. /million cycles (ZrN multi-layer), a 10.9-fold reduction (p = 0.0016). The UHMWPE and CFR-PEEK particles were comparable in size and morphology and predominantly in submicron size [5]. The biological response to representative sub-micron sized CFR-PEEK particles has been demonstrated in vivo based on the leucoyte-endothelian-cell interactions in the synovia of a murine intra-articular knee model by Utzschneider 2010. Schwiesau 2013 extracted the frequency of daily activities in hip and knee replacement patients from literature and estimated an average of 1.76 million gait cycles per year. Thus, the 5 million cycles of in vitro wear testing reflect a mean in vivo service life of 2.9 years, which fits to the time in vivo of 12–60 months of the retrieved RHK devices. The in vitro surface articulation pattern of the wear simulation tests are comparable to findings on retrieved CFR-PEEK components for both types of articulations – cobalt-chromium and ZrN multi-layer coating. For the rotating hinge knee design the findings on retrieved implants demonstrate the high suitability of CFR-PEEK as a biomaterial for highly loaded bearings, such as RHK bushings and flanges in articulation to cobalt-chromium and to a ZrN multi-layer coating


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 103 - 103
1 Aug 2012
Hyde P Fisher J Hall R
Full Access

Spinal total disc replacement (TDR) designs rely heavily on total hip replacement (THR) technology and it is therefore prudent to check that typical TDR devices have acceptable friction and torque behaviour. For spherical devices friction factor (f) is used in place of friction coefficient (mju). The range of loading for the lumbar spinal discs is estimated at perhaps 3 times body weight (BW) for normal activity rising to up to 6 times BW for strenuous activity. [1]. For walking this equates to around 2000 N, which is the maximum load required by the ISO standard for TDR wear testing. [2]. . Three Prodisc-L TDR devices (Synthes Spine) were tested in a single station friction simulator. Bovine serum diluted to 25% was used as a lubricating medium. Flexion-extension was ±5 deg for all experiments with constant axial loading of 500, 2000 and 3000 N. The cycle run length was limited to 100 and the f and torque (T) values recorded around the maximum velocity of the cycle point and averaged over multiple cycles. Preliminary results shows that the 500 N loading produced the largest f of 0.05 ± 0.004. The 2000 N load, which approximates daily activity, gave f = 0.036 ± 0.05 and the 3000 N load gave f = 0.013 ± 0.003. The trend was for lower f with increasing loads. A lumbar TDR friction factor of 0.036 for a 2000N load and the reduction in f for increasing loads is comparable to the lower end of the range of values reported for THR in similar simulator studies using metal-on-polyethylene bearing materials. [3]. The 3000 N result showing that increasing the load above that expected in daily activity does not raise the f could be important when considering rotational stability and anchorage in a TDR device because frictional torque at the bearing surfaces is proportional to the product of load, device radius and f


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 198 - 198
1 Jul 2014
Lerf R Badertscher R Adlhart C Delfosse D
Full Access

Summary Statement. In the most recent type of highly cross-linked UHMWPE, stabilised by vitamin E, the majority of this anti-oxidant cannot be leached out. Even more, the vitamin E molecules are grafted to the UHMWPE polymer backbone by an ether bond. Introduction. Today, highly cross-linked, vitamin E stabilised UHMWPE is clinically accepted as bearing material in joint replacements. Little is known about the chemistry of this antioxidant in the polymer after irradiation. The present investigation presents a model for the chemical nature of the trapping of vitamin E in PE. Method. UHMWPE type GUR 1020 (Ticona GmbH, Kelsterbach/Germany) was blended with 0.1 % vitamin E (Merck KGaA, Darmstadt/Germany), compression moulded at Mathys Ltd Bettlach in-house and cross-linked with γ-irradiation dose of nominally 100 kGy. To assess the extent of vitamin E leachable out, three 0.3 mm sections were cut from the centre of the samples. By extraction in heptane for 48 h at 98 °C, this amount of vitamin E trapped in the polymer was determined by Fourier transform infrared spectroscopy (FTIR) as relative vitamin E index (RVEI). The nature of the extracted substances was analysed by GC-MS. For solids, many of modern spectroscopic methods are not applicable. Therefore, 0.1 % vitamin E were dissolved in two model hydrocarbons (cyclohexane and n-octane) and irradiated at the same 100 kGy γ-dose. In order to determine the chemical bond vitamin E – hydrocarbon after irradiation, these liquid solution samples were analysed by different spectroscopic methods, such as GC-MS, MALDI-TOF-SIMS, HPLC and NMR. Results. Extraction experiments showed that only 23 % of the vitamin E could be extracted by heptane after irradiation whereas from a non-irradiated control sample, all vitamin E was extracted. GC-MS confirmed that the extracted vitamin E was chemically unchanged. Analysing the model hydrocarbons after irradiation, the GC-MS-chromatogram of the cyclohexane solution showed a single peak of the formal cyclohexene adduct of vitamin E. Illustrates this adduct, cyclohexyl-6-O-α-tocopherolether. Contrariwise, the same analysis of the n-octane solution revealed three formal octane adducts. By preparing references substances these three peaks could be attributed to ethers of vitamin E bonded at three different, but chemically equivalent CH. 2. positions on the eight carbon atom chain of n-octane. The single mass peak of the cyclohexane solution arises from the six chemically equivalent carbon atoms in this cyclic hydrocarbon. The 100 kGy γ-dose transformed 76 % of the vitamin E in the n-octane solution to the corresponding ethers and 68 % of the vitamin E in the cyclohexane to cyclohexyl ether. Therefore we postulate that in highly cross-linked, vitamin E stabilised UHMWPE the vitamin E is grafted to the polymer carbon backbone by an ether bond at the phenolic OH group of the vitamin E molecule. Conclusion. Upon irradiation, vitamin E is grafted to the UHMWPE polymer backbone to a large amount. This portion of antioxidant cannot leach out. Therefore, vitamin E stabilised HXLPE is protected from oxidation and ageing by a chemically grafted, quasi internal antioxidant


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 54 - 54
1 May 2012
Hyde P Vicars R Fisher J Brown T Hall RM
Full Access

Introduction. It is believed that wear of replacement joints vivo in is strongly dependent on input motions (kinematics) and loading. There is difficulty in accurately measuring total disc replacement (TDR) kinematics in vivo. It is therefore desirable to ascertain the sensitivity of implant wear in vitro to perturbations of the standard testing parameters. An anterior-posterior (AP) shear force input is not currently included in the present ISO and ASTM testing standards for lumbar TDRs but is known to exist in in vivo. Other joint-replacement wear tests have shown that the phasing of input motions influences the ‘cross-shear’ process of polyethylene wear. Polyethylene bearing materials do not behave linearly to axial loading changes and so the effect on wear rate is difficult to predict. The study aim was to assess the effects on wear of a ProDisc-L TDR under the following conditions: ISO 18191-1 standard inputs; an additional input AP shear; input kinematics phasing changes; axial loading changes. Methods. A five active degree of freedom (DOF) spine simulator was used to compare the effects of varying the kinematic and loading input parameters on a ProDisc-L TDR (Synthes Spine). A four DOF standard ISO (ISO18192-1) test was followed by a five DOF test which included the AP shear force. The standard ISO test was repeated on a second simulator (of identical design) but with the phasing of the lateral bend (LB) and flexion extension (FE) motions changed to be in-phase, creating a low cross-shear motion pattern. The standard ISO test was then modified to give half the ISO standard axial loading. All tests conducted were based on the ISO18192-1 standard for lumbar implants with 15 g/l protein lubricant and modified as described. Gravimetric wear measurements were taken every million cycles (mc) in units of milligrams (mg). Six discs were tested to give statistically significant results. Results. When the fifth DOF AP input force was added, the wear rate showed a non-significant (p=0.78) change in mean wear rate from 12.7 ± 2.1 mg/mc (± standard deviation) to 11.6 ± 1.2 mg/mc. For the repeated test, on the second simulator, changing from standard ISO to in-phase FE-LB conditions (producing a low cross-shear wear pattern) showed a significant mean wear rate fall of 16.1 ± 1.4 mg/mc to 6.0 ± 1.3 mg/mc. The low-load test showed a marginally non-significant (p=0.18) difference in mean wear rate from 16.0 ± 0.8 mg/mc to 15.1 ± 0.8 mg/mc. Conclusion. When comparing the standard ISO test with the modified five DOF AP input test no significant difference in mean wear rate was observed. Comparing the standard ISO test with the modified in-phase (low cross-shear) test produced a significant 62% reduction in wear rate. Reducing the loading by half did not produce a significant fall in mean wear rate. The wear of lumbar TDRs is strongly dependant on input phasing kinematics and perhaps not so dependent on axial loading and AP shear. This counter-intuitive result is important for in vivo wear performance estimation