Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 37 - 37
1 Nov 2021
Peretti GM
Full Access

In the last decades, significant effort has been attempted to salvage the meniscus following injury. Basic science approaches to meniscus repair include procedures for both meniscus regeneration and meniscus healing. Regeneration of meniscal tissue focuses on filling a defect with reparative tissue, which resembles the native structure and function of the meniscus. Procedures for meniscus healing, on the other hand, aim to accomplish adhesion between the margins of a meniscal lesion, with no attempt to regenerate or replace meniscal tissue. Regeneration studies of tissue to fill a defect in the meniscus have shown interesting results, but complete restoration of the native meniscus has not yet been accomplished. Healing of a meniscal lesion has been investigated in different models although none has demonstrated reproducible healing. Therefore, different paths of investigation must be undertaken, and one of these may be the cell-therapy / tissue engineering approach. In a study from our group, we showed the capacity of chondrocyte-seeded cartilaginous scaffold to repair a bucket-handle lesion of the knee meniscus orthotopically in a large animal study. Following studies were done in order to test the potential of other scaffolds and different cell sources for the repair of the meniscal tissue. We have also evaluated the role of hypoxia in meniscal development in vitro as basis for future research in this field, as hypoxia could be be considered as a promoter for meniscal cells maturation, and opens considerably opportunities in the field of meniscus tissue engineering


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 4 - 4
1 Nov 2021
Tarantino U
Full Access

Cigarette smoking has a negative impact on the skeletal system by reducing bone mass and increasing the risk of fractures through its direct or indirect effects on bone remodeling. Recent evidence shows that smoking causes an imbalance in bone turnover, making bone vulnerable to osteoporosis and fragility fractures. In addition, cigarette smoking is known to have deleterious effects on fracture healing, as a positive correlation has been shown between the daily number of cigarettes smoked and years of exposure to smoking, although the underlying mechanisms are not fully understood. Smoking is also known to cause several medical and surgical complications responsible for longer hospital stays and a consequent increase in resource consumption. Smoking cessation is, therefore, highly advisable to prevent the onset of metabolic bone disease. However, some of the consequences appear to continue for decades. Based on this evidence, the aim of our work was to assess the impact of smoking on the skeletal system, particularly bone fractures, and to identify the pathophysiological mechanisms responsible for the impairment of fracture healing. Because smoking represents a major public health problem, understanding the association between cigarette smoking and the occurrence of bone disease is necessary in order to identify potential new targets for intervention.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 94 - 94
1 Mar 2021
Harrison A
Full Access

Abstract. Objectives. Review the evidence of low intensity pulsed ultrasound (LIPUS) for fracture non-union treatment and the potential to treat fractures in patients with co-morbidities at risk of fracture non-union. Methods. Data was gathered from both animal and human studies of fracture repair to provide an overview of the LIPUS in bone healing applications to provide in-depth evidence to substantiate the use in treatment of non-union fractures and to propose a scientific rational to develop a clinical development programme. Results. LIPUS is an effective method for treating fracture non-union, with most studies showing heal rates in the mid 80%. In the UK NICE has published MTG-12 guidance for non-union treatment, which demonstrates that LIPUS is an effective and cost effective method as an alternative to surgery to treat non-union fractures. Basic science studies and evaluation of clinical trial data has led to the understanding that LIPUS can mitigate co-morbidities related to failure of bone healing such as diabetes, advancing age and tobacco use. Future clinical trials will evaluate the use of LIPUS in acute fractures in patients with high risk of low bone healing capacity to prevent the development of a non-union. As with all medical treatments, LIPUS for fracture repair needs to be used appropriately, with poorly fixed fractures or large fracture gaps, being unsuitable for LIPUS treatment. In addition, considerations such as targeting the fracture site in deep-seated bones and clinician / patient engagement to ensure good compliant usage are vital factors to ensure good clinical outcomes. Conclusion. Using basic science research, a thorough knowledge of the mechanism of action has been established, which has elucidated that co-morbidities related to the development of fracture non-union can be mitigated by the LIPUS technology. A pragmatic clinical trial in the United States is currently ongoing to test these hypothesises clinically. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 142 - 142
2 Jan 2024
Korkusuz F
Full Access

Disease modifying approaches are commonly applied in OA patients. An aging society with better life expectancies is increasing in Europe and the globe. Orthobiologics cover intraarticular hyaluronan injections and also cellular therapies. Cellular therapies range from platelet rich plasma (PRP) applications to exosomes. Short term follow-up of limited number of patients revealed favorable results in clinical cellular therapies. Most of these studies evaluated decrease of pain and increase in function. Recent basic science studies focused on the action mechanism of orthobiologic therapies however patient perspective is less studied. Our research team has recently performed a qualitative study on the patient perspective of hyaluronan injection of the knee joint. Findings of that study will be shared and future patient knowledge based options on orthobiologics will be discussed


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 30 - 30
2 Jan 2024
Park H Kim R
Full Access

Glutamate regulates the expression of apoptosis-related genes and triggers the apoptosis of fibroblasts in rotator cuff tendons. Subacromial bursitis is always accompanied by symptomatic rotator cuff tear (RCT). However, no study has been reported on the presence of glutamate in subacromial bursa and on its involvement of shoulder pain in patients who had RCT. The purposes of this study were to determine whether the glutamate expression in subacromial bursa is associated with the presence of RCT and with the severity of shoulder pain accompanying RCT. Subacromial bursal tissues were harvested from patients who underwent arthroscopic rotator cuff tendon repair or glenoid labral repair with intact rotator cuff tendon. Glutamate tissue concentrations were measured, using a glutamate assay kit. Expressions of glutamate and its receptors in subacromial bursae were histologically determined. The sizes of RCT were determined by arthroscopic findings, using the DeOrio and Cofield classification. The severity of shoulder pain was determined, using visual analog scale (VAS). Any associations between glutamate concentrations and the size of RCT were evaluated, using logistic regression analysis. The correlation between glutamate concentrations and the severity of pain was determined, using the Pearson correlation coefficient. Differences with a probability <0.05 were considered statistically significant. Glutamate concentrations showed significant differences between the torn tendon group and the intact tendon group (P = 0.009). Concentrations of glutamate significantly increased according to increases in tear size (P < 0.001). In histological studies, the expressions of glutamate and of its ionotropic and metabotropic receptors have been confirmed in subacromial bursa. Glutamate concentrations were significantly correlated with pain on VAS (Rho=0.56 and P =0.01). The expression of glutamate in subacromial bursa is significantly associated with the presence of RCT and significantly correlated with its accompanying shoulder pain. Acknowledgements: This research was supported by the Basic Science Research Program, through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01018955 and 2017R1D1A1B03035232)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 106 - 106
1 May 2017
Murray I Gonzalez Z Iredale J Simpson H Peault B Henderson N
Full Access

Background. There are currently no effective treatments for skeletal muscle fibrosis. Myofibroblasts are the major cellular effectors of fibrosis but their origin in muscle is unknown. We report that PDGFRβ (platelet derived growth factor receptor beta) Cre inactivates genes in murine PDGFRβ+ cells and myofibroblasts in muscle with high efficiency. We used this system to delete the integrin αv subunit because of the suggested role of multiple αv integrins as central mediators of fibrosis in multiple organs. Methods. Muscle fibrosis was induced by intramuscular cardiotoxin (CTX) injection. The contribution of PDGFRβ+ cells to fibrosis was assessed in double-flourescent reporter (mTmG) mice under PDGFRβ-Cre control. Itgavflox/flox;PDGFRβ-Cre mice were used to investigate whether loss of αv integrins on PDGFRβ+ cells influences fibrosis development. A small-molecule inhibitor of αv integrins (CWHM12) was used to determine whether pharmacological blockade of αv integrins could attenuate fibrosis. Results. At 21 days following injury PDGFRβ+ cells in mTmG;PDGFRβ-Cre mice were distributed in a manner characteristic of myofibroblasts. PDGFRβ+ cells sorted from injured muscles of mTmG;PDGFRβ-Cre mice showed induction of genes associated with myofibroblastic transition. Itgavflox/flox;PDGFRβ-Cre mice were protected from CTX induced fibrosis, as determined by picrosirius red staining for collagen (p<0.01). Sorted and culture activated αv-null PDGFRβ+ cells demonstrated significant reduction in collagen1 over controls (p<0.05). CWHM12 significantly reduced muscle fibrosis when delivered from the time of injury (prophylactic model: p<0.01) and from day 10 post injury (therapeutic model: p<0.01). Furthermore, CWHM12 inhibited collagen1 expression by PDGFRβ+ cells ex-vivo (p<0.05). Conclusions. PDGFRβ-Cre labels profibrotic cells in skeletal muscle and depletion of αv integrins in these cells reduces muscle fibrosis. Most importantly from a treatment standpoint, pharmacologic inhibition of αv integrins using a small molecule inhibitor may have utility in the prevention and treatment of skeletal muscle fibrosis. Level of Evidence. Basic Science


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 16 - 16
1 Jul 2014
Larsson K Nordborg C Örndal C Brisby H Rydevik B
Full Access

Introduction. In degenerative disorders of the spine such as disc herniation, intervertebral discs can affect neural tissue, which may result in pain as demonstrated in both basic science and clinical investigations. Previous in vitro and in vivo studies have shown that notochordal cells and chondrocyte-like cells in nucleus pulposus affect nervous tissue differently. The aim of the present study was to evaluate the morphology of spinal neural tissue in an in vivo rat model following application of cells derived from nucleus pulposus. Material and method. A disc herniation model in rats (n=58) was used. The L4 nerve root was exposed to a) nucleus pulposus (3mg), b) notochordal cells (25,000 cells) or c) chondrocyte-like cells (25,000 cells). Four control groups were included: 1) application of nucleus pulposus (3 mg) and mechanical displacement of the spinal nerve complex, 2) sham operated animals, 3) application of cell diluent (50 μl) and 4) naïve animals. Seven days after surgery the L4 nerve roots with their dorsal root ganglion were harvested and prepared for blinded neuropathological examinations using light microscopy. Results. Damage and loss of myelinated nerve fibers as well as epineural granulation tissue were most pronounced in the group that had been subjected to nerve root displacement and application of nucleus pulposus. There was significantly less nerve fiber damage in all other groups. The number of myelinated nerve fibers with enlarged outer Schwann cell compartment was significantly higher in all experimental groups as compared to naïve animals, except for animals in which the nerve root complex had been exposed to cell diluent, notochordal cells and chondrocyte-like cells. Discussion and Conclusion. This is the first examination nerve root and dorsal root ganglion morphology after exposure to notochordal cells and chondrocyte-like cells in an in vivo model. The results indicate that application of notochordal cells and chondrocyte-like cells, per se, do not structurally affect the myelinated nerve fibers compared to naïve animals. However, one cannot exclude that there may be physiological effects of notochordal cells and chondrocyte-like cells on nerve tissue in vivo although no morphological differences were observed with the present method. The findings in the present study support previous observations that mechanical nerve tissue displacement and application of nucleus pulposus can induce pronounced morphological nerve tissue changes. However, the combination of mechanical nerve tissue displacement and application of notochordal cells and/or chondrocyte-like cells was not tested. In conclusion, the present study suggests that mechanical nerve tissue displacement is a prerequisite for the induction of morphological changes following application of disc tissue and its components on neural tissue. Summary. The effects of notochordal cells and chondrocyte-like cells on spinal nerve tissue might be dependent on concurrent mechanical nerve tissue deformation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 36 - 36
1 Aug 2012
Grange S Wills G Gilbert L Santer M Recio A Kanani M Zhang P Smitham P
Full Access

Background and objectives. The prevention of osteoporotic fractures is a global problem. Key to this strategy is efficient identification of ‘at risk’ patients in order to address the osteoporosis pandemic, including the identification of previously sustained fractures. GP practices are now integrating touch screens as a method of registering patients' attendance for an appointment, so all ages of patients are becoming familiar with this channel of communication. Our touch screen patient administered questionnaire system intends to provide an effective solution. Methods. The Virtual Research Integration Collaboration (VRIC) framework supports the integration of basic science and clinical research. It enables the management of research lifecycles by integrating scientific approaches with everyday work practice in a virtual research environment (VRE). ‘Catch Before a Fall’ (CBaF) is a clinical research project using VRIC, using a dedicated interface, co-designed by orthopaedic surgeons and basic scientists, adapted for sensory and IT impaired subjects to capture such information, since approximately 75% of registered over 65 year olds visit their GP each year. Results. Established in test sites across the UK, Data analysis is conducted via the VRIC ‘on-line’ portal. The conclusion of the research process is followed up within that tool. Using the validated osteoporosis risk questionnaire augmented by self reporting of height loss to identify missed vertebral fractures, we calculate the patients' risk factor of developing osteoporosis and of having an osteoporosis related fracture within the next 10 years. Patients' data are collected through CBaF (figure 1) and stored in data structures matching the VRIC architecture for automatic importing via a dedicated script and offering direct clinical service provider feedback. Conclusion. Patients recollect a previous fracture including other risk factors, so we are automating the secure data collection process to improve efficiency and save resources. We should see a ‘win’ for the patient who will receive better informed care. CBaF supports the practice who will streamline their pathway for effective osteoporosis management. The insight into personalised care management is a pathfinder, demonstrating improvement of services for our community, should reduce the greater silent population of osteoporosis sufferers worldwide, addressing the acute service burden ‘at source’


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 222 - 222
1 Jul 2014
Lu H Hu J Cao Y Wu T Li D Cao M
Full Access

Summary Statement. In this study, we employed a novel imaging modalities, the synchrotron radiation microcomputed tomography (SRμCT) to visualise the 3D morphology of the spinal cord microvasculature and successfully obtained the 3D images. Introduction. Understanding the morphology of the spinal cord microvasculature in three-dimensions (3D) is limited by the lack of an effective high-resolution imaging technique. In this study, we used two novel imaging modalities, conventional x-ray microcomputed tomography (CμCT) and synchrotron radiation microcomputed tomography (SRμCT), to visualise the 3D morphology of the spinal cord microvasculature and to compare their utility in basic science research. Methods. (1) Sample Preparation: Ten adult Sprague-Dawley male rats (250–300 g) were randomly divided into A and B groups (n = 5). Both groups were subjected to angiography with contrast agent (Microfil MV-122, Flow Tech, CA, USA). The samples in group A were examined by CμCT, and the group B samples were analyzed through SRμCT scanning. After scanning, the samples was photographed with a stereomicroscope. (2) Images Analysis: The morphometric parameters in 2D were calculated using the Image-Pro Plus program (Ver. 6.0, Media Cybernetics. Bethesda, MD, USA), In the 3D dataset, the algorithms for the analysis of vessel structures in the VG Studio Max software package (Volume Graphics GmbH, Germany) were applied to calculate the morphological parameters of the spinal cord microvasculature. Results. The reconstructed tomographic slices of the rat spinal cord microvasculature obtained by these two techniques are illustrated. In the 2D tomographic view, the area with a high gray value, which indicates the location of the vessels, could be easily differentiated from the neural parenchymal background. The CμCT slices dataset only provided indistinctive images with weak apparent artefacts. In contrast, extensive distributions of the microvessels were found in the intrinsic neural parenchyma in the SRμCT slices. (2) The 3D reconstructed image obtained through SRμCT, provided a clear and precise configuration of the complex spatial structure and connectivity of the intensive microvasculature of the spinal cord when compared with CμCT. (3) The extracted 3D spatial distribution image of the spinal cord microvasculature was able to match the specimen's morphology photographed with a stereomicroscope. Discussion & Conclusion. In this study, we have combined two emerging techniques to capture the 3D morphological features of the rat spinal cord microvasculature in vitro for the first time. With the help of contrast agents and the advanced computed tomography algorithm, both CμCT and SRμCT were able to provide a valuable 3D volumetric dataset of the spinal cord vascular structure. These datasets could be extracted and analyzed from different angles and at multiple levels, which are analysis that were not previously possible with the conventional histological methods. However, when compared with CμCT, SRμCT was able to achieve higher-resolution vascular imaging and to obtain detailed 3D morphological features of the spinal cord microvasculature. These data imply that SRμCT may be regarded as a unique imaging technique that is more suitable than CμCT for 3D angioarchitectural investigation in preclinical neurovascular research


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1578 - 1585
1 Dec 2014
Rankin KS Sprowson AP McNamara I Akiyama T Buchbinder R Costa ML Rasmussen S Nathan SS Kumta S Rangan A

Trauma and orthopaedics is the largest of the surgical specialties and yet attracts a disproportionately small fraction of available national and international funding for health research. With the burden of musculoskeletal disease increasing, high-quality research is required to improve the evidence base for orthopaedic practice. Using the current research landscape in the United Kingdom as an example, but also addressing the international perspective, we highlight the issues surrounding poor levels of research funding in trauma and orthopaedics and indicate avenues for improving the impact and success of surgical musculoskeletal research.

Cite this article: Bone Joint J 2014; 96-B:1578–85.


Bone & Joint Research
Vol. 5, Issue 6 | Pages 263 - 268
1 Jun 2016
Yan J MacDonald A Baisi L Evaniew N Bhandari M Ghert M

Objectives

Despite the fact that research fraud and misconduct are under scrutiny in the field of orthopaedic research, little systematic work has been done to uncover and characterise the underlying reasons for academic retractions in this field. The purpose of this study was to determine the rate of retractions and identify the reasons for retracted publications in the orthopaedic literature.

Methods

Two reviewers independently searched MEDLINE, EMBASE, and the Cochrane Library (1995 to current) using MeSH keyword headings and the ‘retracted’ filter. We also searched an independent website that reports and archives retracted scientific publications (www.retractionwatch.com). Two reviewers independently extracted data including reason for retraction, study type, journal impact factor, and country of origin.


Bone & Joint 360
Vol. 3, Issue 1 | Pages 37 - 38
1 Feb 2014
Hak DJ


Bone & Joint 360
Vol. 3, Issue 4 | Pages 35 - 38
1 Aug 2014
Hammerberg EM


Objective

To study the effect of hyaluronic acid (HA) on local anaesthetic chondrotoxicity in vitro.

Methods

Chondrocytes were harvested from bovine femoral condyle cartilage and isolated using collagenase-containing media. At 24 hours after seeding 15 000 cells per well onto a 96-well plate, chondrocytes were treated with media (DMEM/F12 + ITS), PBS, 1:1 lidocaine (2%):PBS, 1:1 bupivacaine (0.5%):PBS, 1:1 lidocaine (2%):HA, 1:1 bupivacaine (0. 5%):HA, or 1:1 HA:PBS for one hour. Following treatment, groups had conditions removed and 24-hour incubation. Cell viability was assessed using PrestoBlue and confirmed visually using fluorescence microscopy.