In the last decades, significant effort has been attempted to salvage the meniscus following injury.
Cigarette smoking has a negative impact on the skeletal system by reducing bone mass and increasing the risk of fractures through its direct or indirect effects on bone remodeling. Recent evidence shows that smoking causes an imbalance in bone turnover, making bone vulnerable to osteoporosis and fragility fractures. In addition, cigarette smoking is known to have deleterious effects on fracture healing, as a positive correlation has been shown between the daily number of cigarettes smoked and years of exposure to smoking, although the underlying mechanisms are not fully understood. Smoking is also known to cause several medical and surgical complications responsible for longer hospital stays and a consequent increase in resource consumption. Smoking cessation is, therefore, highly advisable to prevent the onset of metabolic bone disease. However, some of the consequences appear to continue for decades. Based on this evidence, the aim of our work was to assess the impact of smoking on the skeletal system, particularly bone fractures, and to identify the pathophysiological mechanisms responsible for the impairment of fracture healing. Because smoking represents a major public health problem, understanding the association between cigarette smoking and the occurrence of bone disease is necessary in order to identify potential new targets for intervention.
Abstract. Objectives. Review the evidence of low intensity pulsed ultrasound (LIPUS) for fracture non-union treatment and the potential to treat fractures in patients with co-morbidities at risk of fracture non-union. Methods. Data was gathered from both animal and human studies of fracture repair to provide an overview of the LIPUS in bone healing applications to provide in-depth evidence to substantiate the use in treatment of non-union fractures and to propose a scientific rational to develop a clinical development programme. Results. LIPUS is an effective method for treating fracture non-union, with most studies showing heal rates in the mid 80%. In the UK NICE has published MTG-12 guidance for non-union treatment, which demonstrates that LIPUS is an effective and cost effective method as an alternative to surgery to treat non-union fractures.
Disease modifying approaches are commonly applied in OA patients. An aging society with better life expectancies is increasing in Europe and the globe. Orthobiologics cover intraarticular hyaluronan injections and also cellular therapies. Cellular therapies range from platelet rich plasma (PRP) applications to exosomes. Short term follow-up of limited number of patients revealed favorable results in clinical cellular therapies. Most of these studies evaluated decrease of pain and increase in function. Recent
Glutamate regulates the expression of apoptosis-related genes and triggers the apoptosis of fibroblasts in rotator cuff tendons. Subacromial bursitis is always accompanied by symptomatic rotator cuff tear (RCT). However, no study has been reported on the presence of glutamate in subacromial bursa and on its involvement of shoulder pain in patients who had RCT. The purposes of this study were to determine whether the glutamate expression in subacromial bursa is associated with the presence of RCT and with the severity of shoulder pain accompanying RCT. Subacromial bursal tissues were harvested from patients who underwent arthroscopic rotator cuff tendon repair or glenoid labral repair with intact rotator cuff tendon. Glutamate tissue concentrations were measured, using a glutamate assay kit. Expressions of glutamate and its receptors in subacromial bursae were histologically determined. The sizes of RCT were determined by arthroscopic findings, using the DeOrio and Cofield classification. The severity of shoulder pain was determined, using visual analog scale (VAS). Any associations between glutamate concentrations and the size of RCT were evaluated, using logistic regression analysis. The correlation between glutamate concentrations and the severity of pain was determined, using the Pearson correlation coefficient. Differences with a probability <0.05 were considered statistically significant. Glutamate concentrations showed significant differences between the torn tendon group and the intact tendon group (P = 0.009). Concentrations of glutamate significantly increased according to increases in tear size (P < 0.001). In histological studies, the expressions of glutamate and of its ionotropic and metabotropic receptors have been confirmed in subacromial bursa. Glutamate concentrations were significantly correlated with pain on VAS (Rho=0.56 and P =0.01). The expression of glutamate in subacromial bursa is significantly associated with the presence of RCT and significantly correlated with its accompanying shoulder pain. Acknowledgements: This research was supported by the
Background. There are currently no effective treatments for skeletal muscle fibrosis. Myofibroblasts are the major cellular effectors of fibrosis but their origin in muscle is unknown. We report that PDGFRβ (platelet derived growth factor receptor beta) Cre inactivates genes in murine PDGFRβ+ cells and myofibroblasts in muscle with high efficiency. We used this system to delete the integrin αv subunit because of the suggested role of multiple αv integrins as central mediators of fibrosis in multiple organs. Methods. Muscle fibrosis was induced by intramuscular cardiotoxin (CTX) injection. The contribution of PDGFRβ+ cells to fibrosis was assessed in double-flourescent reporter (mTmG) mice under PDGFRβ-Cre control. Itgavflox/flox;PDGFRβ-Cre mice were used to investigate whether loss of αv integrins on PDGFRβ+ cells influences fibrosis development. A small-molecule inhibitor of αv integrins (CWHM12) was used to determine whether pharmacological blockade of αv integrins could attenuate fibrosis. Results. At 21 days following injury PDGFRβ+ cells in mTmG;PDGFRβ-Cre mice were distributed in a manner characteristic of myofibroblasts. PDGFRβ+ cells sorted from injured muscles of mTmG;PDGFRβ-Cre mice showed induction of genes associated with myofibroblastic transition. Itgavflox/flox;PDGFRβ-Cre mice were protected from CTX induced fibrosis, as determined by picrosirius red staining for collagen (p<0.01). Sorted and culture activated αv-null PDGFRβ+ cells demonstrated significant reduction in collagen1 over controls (p<0.05). CWHM12 significantly reduced muscle fibrosis when delivered from the time of injury (prophylactic model: p<0.01) and from day 10 post injury (therapeutic model: p<0.01). Furthermore, CWHM12 inhibited collagen1 expression by PDGFRβ+ cells ex-vivo (p<0.05). Conclusions. PDGFRβ-Cre labels profibrotic cells in skeletal muscle and depletion of αv integrins in these cells reduces muscle fibrosis. Most importantly from a treatment standpoint, pharmacologic inhibition of αv integrins using a small molecule inhibitor may have utility in the prevention and treatment of skeletal muscle fibrosis. Level of Evidence.
Introduction. In degenerative disorders of the spine such as disc herniation, intervertebral discs can affect neural tissue, which may result in pain as demonstrated in both
Background and objectives. The prevention of osteoporotic fractures is a global problem. Key to this strategy is efficient identification of ‘at risk’ patients in order to address the osteoporosis pandemic, including the identification of previously sustained fractures. GP practices are now integrating touch screens as a method of registering patients' attendance for an appointment, so all ages of patients are becoming familiar with this channel of communication. Our touch screen patient administered questionnaire system intends to provide an effective solution. Methods. The Virtual Research Integration Collaboration (VRIC) framework supports the integration of
Summary Statement. In this study, we employed a novel imaging modalities, the synchrotron radiation microcomputed tomography (SRμCT) to visualise the 3D morphology of the spinal cord microvasculature and successfully obtained the 3D images. Introduction. Understanding the morphology of the spinal cord microvasculature in three-dimensions (3D) is limited by the lack of an effective high-resolution imaging technique. In this study, we used two novel imaging modalities, conventional x-ray microcomputed tomography (CμCT) and synchrotron radiation microcomputed tomography (SRμCT), to visualise the 3D morphology of the spinal cord microvasculature and to compare their utility in
Trauma and orthopaedics is the largest of the
surgical specialties and yet attracts a disproportionately small
fraction of available national and international funding for health
research. With the burden of musculoskeletal disease increasing,
high-quality research is required to improve the evidence base for
orthopaedic practice. Using the current research landscape in the
United Kingdom as an example, but also addressing the international
perspective, we highlight the issues surrounding poor levels of
research funding in trauma and orthopaedics and indicate avenues
for improving the impact and success of surgical musculoskeletal
research. Cite this article:
Despite the fact that research fraud and misconduct are under scrutiny in the field of orthopaedic research, little systematic work has been done to uncover and characterise the underlying reasons for academic retractions in this field. The purpose of this study was to determine the rate of retractions and identify the reasons for retracted publications in the orthopaedic literature. Two reviewers independently searched MEDLINE, EMBASE, and the Cochrane Library (1995 to current) using MeSH keyword headings and the ‘retracted’ filter. We also searched an independent website that reports and archives retracted scientific publications (Objectives
Methods
To study the effect of hyaluronic acid (HA) on local anaesthetic
chondrotoxicity Chondrocytes were harvested from bovine femoral condyle cartilage
and isolated using collagenase-containing media. At 24 hours after
seeding 15 000 cells per well onto a 96-well plate, chondrocytes
were treated with media (DMEM/F12 + ITS), PBS, 1:1 lidocaine (2%):PBS,
1:1 bupivacaine (0.5%):PBS, 1:1 lidocaine (2%):HA, 1:1 bupivacaine (0.
5%):HA, or 1:1 HA:PBS for one hour. Following treatment, groups
had conditions removed and 24-hour incubation. Cell viability was
assessed using PrestoBlue and confirmed visually using fluorescence
microscopy.Objective
Methods