Aim. This study describes the histologic changes seen with a gentamicin-eluting synthetic bone graft substitute (BGS)(1) in managing bone defects after resection of chronic osteomyelitis (cOM). Method. 154 patients with mean follow-up of 21.8 months (12–56) underwent treatment of cOM with an antibiotic-loaded
Aim. Open fractures with bone loss and skin lesions carry a high risk of infection and complication. Treatment options are usually a two-stage approach (debridement, temporary stabilization with external fixation followed by open reduction and stabilization with plate). We describe an experience for a single stage procedure with an antibiotic eluting bone graft substitute (BGS) for prophylaxis of implant-related infection. Method. Between December 2014 and January 2016 were analysed the data of twenty-six patients with open fractures (Gustilo and Anderson grade I and II) or with skin lesion and high risk of contamination and bone loss. They where treated with debridement of soft tissue, closed reduction of fracture, placement of a plate augmented with
Biomaterials used in regenerative medicine should be able to support and promote the growth and repair of natural tissues. Bioactive glasses (BGs) have a great potential for applications in bone tissue engineering [1, 2]. As it is well known
Aim. Biomaterial-associated infections (BAI) present a formidable clinical challenge. Bioactive glasses (BG) have proven highly successful in diverse clinical applications, especially in dentistry and orthopaedics. In this study, we aimed to determine the effect of three commonly used BG composition and particle sizes on cell and bacterial attachment and growth. Our focus is on understanding the changes in pH and osmotic pressure in the surrounding environment during glass degradation. Method. First, three different melt-derived glasses were characterized by analyzing particle size and glass network structure using Raman and NMR. The different glasses were then tested in vitro by seeding 4x 10. 4. cells/well (SaOS Cell line) in a 48 well plate. After a pre-incubation period of 72 hours, the different
Aim. To compare a variety of commercially available bone graft substitutes (BGS) in terms of promoting adherence, proliferation and differentiation of osteoprogenitor cells. Materials and methods. A fixed number of porcine mononuclear cells obtained from cancellous bone of the proximal femur was mixed with a standard volume of
Open fractures carry a high risk of infection. Our objective was to evaluate the effect of a resorbable bone substitute (BS) (calcium sulphate and hydroxyapatite) eluting Gentamicin (Cerament™| G) in the prevention of bone infection and nonunion after open fracture and/or skin lesion. The data of patients undergoing osteosynthesis augmented with BS and Gentamicin between December 2012 and April 2015 were retrospectively analyzed from a prospectively established database. Patients were treated for open fractures grade 1 Gustilo or skin lesion with high risk of contamination. Surgical technique included initial debridement, open reduction and internal fixation (ORIF), implantation of BS and Gentamicin, soft tissue closure, and systemic antibiotic therapy for 2 weeks in all cases. Clinical outcome and radiographic bone defect filling were assessed by blinded observers. From 12/2013 to 4/2015 nine male and six female with mean age 53yrs (24–77) were treated with ORIF and BS and Gentamicin for open fractures. Fracture locations were tibial plateau (two), tibia (two), proximal humerus (one), calcaneus (four), talus (one), forearm (three), and elbow (one) distal femur (one). at final follow-up (mean 11.1 months; range 7–13). One patient developed a sterile seroma, which was treated conservatively. No post-operative infection occurred during the follow-up period. The calcium sulphate phase of
Introduction. Primary stability is an important factor for long-term implant survival in total hip arthroplasty. In revision surgery, implant fixation becomes especially challenging due the acetabular bone defects, which are often present. Previous studies on primary stability of revision components often applied simplified geometrical defect shapes in a variety of sizes and locations. The objectives of this study were to (1) develop a realistic defect model in terms of defect volume and shape based on a clinically existing acetabular bone defect, (2) develop a surrogate acetabular test model, and (3) exemplarily apply the developed approach by testing the primary stability of a pressfit-cup with and without bone graft substitute (BGS). Materials & Methods. Based on clinical computed tomography data and a method previously published [1], volume and shape information of a representative defect, chosen in consultation with four senior hip revision surgeons, was derived. Volume and shape of the representative defect was approximated by nine reaming procedures with hemispherical acetabular reamers, resulting in a simplified defect with comparable volume (18.9 ml original vs. 18.8 ml simplified) and shape. From this simplified defect (Defect D), three additional defect models (Defect A, B, C) were derived by excluding certain reaming procedures, resulting in four defect models to step-wise test different acetabular revision components. A surrogate acetabular model made of 20 PCF polyurethane foam with the main support structures was developed [2]. For the exemplary test, three series for Defect A were defined: Native (acetabulum without defect), Empty (defect acetabulum without filling), Filled (defect acetabulum with