Advertisement for orthosearch.org.uk
Results 1 - 20 of 24
Results per page:
Bone & Joint Open
Vol. 3, Issue 12 | Pages 991 - 997
23 Dec 2022
McPherson EJ Stavrakis AI Chowdhry M Curtin NL Dipane MV Crawford BM

Aims. Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects. Methods. We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures. Results. Mean follow-up was 39.5 months (36 to 71), with a significant improvement in post-revision function compared to preoperative function. Graft site remodelling was rated radiologically as moderate in 31 hips (63%) and strong in 12 hips (24%). There were no cases of complete graft site dissolution. No acetabular loosening was identified. None of the patients developed clinically significant heterotopic ossification. There were twelve reoperations: six patients developed post-revision infections, three experienced dislocations, two sustained periprosthetic femur fractures, and one subject had femoral component aseptic loosening. Conclusion. Our series reports bone defect restoration with the sole use of a biphasic injectable BGS in the periacetabular region. We did not observe significant graft dissolution. We emphasize that successful graft site remodelling requires meticulous recipient site preparation. Cite this article: Bone Jt Open 2022;3(12):991–997


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 74 - 74
14 Nov 2024
Durach A Kunisch E Renkawitz T Westhauser F Brauer D Hohenbild F
Full Access

Introduction. Bioactive glasses (BGs) promote osteogenic differentiation of bone progenitor cells by releasing therapeutically active ions. The well-described 45S5-BG (in mol%: SiO. 2. 46.13; P. 2. O. 5. 2.60; CaO 26.91; Na. 2. O 24.35) was supplemented with CaF. 2. and NaF being added to the batch at nominal 5 (F5-BG) and 25 mol% (F25-BG), respectively. While the effect on physical and chemical properties has already been characterized, the biological properties require further studies. This study investigates the effects of fluoride-supplemented BGs on the osteogenic and angiogenic properties of human bone marrow mesenchymal stromal cells (BMSCs) in vitro. Method. BMSCs were co-cultured with melt-derived 45S5-BG, F5-BG, or F25-BG in ascending concentrations (1, 2 and 3 mg/ml). At 7 days, cell number was determined by 4,6-diamidine-2-phenylindole (DAPI) staining and cell viability by fluorescein diacetate (FDA) assay. The osteogenic potential of the BGs was evaluated through alkaline phosphatase (ALP) gene expression and activity, along with bone morphogenetic protein-2 (BMP2) gene expression and protein concentration. Vascular endothelial growth factor (VEGF) gene expression and protein concentration assessed angiogenic potential. As control, BMSCs were cultured without BG exposure. Result. All BGs significantly promoted cell number and viability, with F25-BG showing the highest count at 3 mg/ml. Osteogenic markers showed a significant decrease in ALP gene expression and activity, especially at higher concentrations. All BG groups demonstrated increased BMP2 protein concentration and gene expression compared to the control, with higher BG and fluoride concentrations correlating with greater increases in BMP2. VEGF gene expression increased in all analysed BGs. The fluoride-free BG group had the highest VEGF protein concentrations, while the F25 BG group showed the highest VEGF gene expression. Conclusion. The fluoride-substituted BGs exhibit excellent cytocompatibility, enhance BMSC proliferation and positively affect BMP2 gene expression and levels, suggesting their potential for osteogenic differentiation. Further research is necessary to assess their proangiogenic effect and potential advantages over 45S5-BG


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 123 - 123
2 Jan 2024
Gögele C Müller S Wiltzsch S Lenhart A Schäfer-Eckart K Schulze-Tanzil G
Full Access

The regenerative capacity of hyaline cartilage is greatly limited. To prevent the onset of osteoarthritis, cartilage defects have to be properly treated. Cartilage, tissue engineered by mean of bioactive glass (BG) scaffolds presents a promising approach. Until now, conventional BGs have been used mostly for bone regeneration, as they are able to form a hydroxyapatite (HA) layer and are therefore, less suited for cartilage reconstruction. The aim of this study is to compare two BGs based on a novel BG composition tailored specifically for cartilage (CAR12N) and patented by us with conventional BG (BG1393) with a similar topology. The highly porous scaffolds consisting of 100% BG (CAR12N, CAR12N with low Ca2+/Mg2+ and BG1393) were characterized and dynamically seeded with primary porcine articular chondrocytes (pACs) or primary human mesenchymal stem cells (hMSCs) for up to 21 days. Subsequently, cell viability, DNA and glycosaminoglycan contents, cartilage-specific gene and protein expression were evaluated. The manufacturing process led to a comparable high (over 80%) porosity in all scaffold variants. Ion release and pH profiles confirmed bioactivity for them. After both, 7 and 21 days, more than 60% of the total surfaces of all three glass scaffold variants was densely colonized by cells with a vitality rate of more than 80%. The GAG content was significantly higher in BG1393 colonized with pACs. In general, the GAG content was higher in pAC colonized scaffolds in comparison to those seeded with hMSCs. The gene expression of cartilage-specific collagen type II, aggrecan, SOX9 and FOXO1 could be detected in all scaffold variants, irrespectively whether seeded with pACs or hMSCs. Cartilage-specific ECM components could also be detected at the protein level. In conclusion, all three BGs allow the maintenance of the chondrogenic phenotype or chondrogenic differentiation of hMSCs and thus, they present a high potential for cartilage regeneration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 129 - 129
2 Jan 2024
Doyle S Winrow D Aregbesola T Martin J Pernevik E Kuzmenko V Howard L Thompson K Johnson M Coleman C
Full Access

In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for synthetic grafting substitutes (BGS) continues to grow while allograft bone grafts steadily decrease. Synthetic BGS are low in mechanical strength and bioactivity, inspiring the development of novel grafting materials, a traditionally laborious and expensive process. Here a novel BGS derived from sustainably grown coral was evaluated. Coral-derived scaffolds are a natural calcium carbonate bio-ceramic, which induces osteogenesis in bone marrow mesenchymal stem cells (MSCs), the cells responsible for maintaining bone homeostasis and orchestrating fracture repair. By 3D printing MSCs in coral-laden bioinks we utilise high throughput (HT) fabrication and evaluation of osteogenesis, overcoming the limitations of traditional screening methods. MSC and coral-laden GelXA (CELLINK) bioinks were 3D printed in square bottom 96 well plates using a CELLINK BIO X printer with pneumatic adapter Samples were non-destructively monitored during the culture period, evaluating both the sample and the culture media for metabolism (PrestoBlue), cytotoxicity (lactose dehydrogenase (LDH)) and osteogenic differentiation (alkaline phosphatase (ALP)). Endpoint, destructive assays used included qRT-PCR and SEM imaging. The inclusion of coral in the printed bioink was biocompatable with the MSCs, as reflected by maintained metabolism and low LDH release. The inclusion of coral induced osteogenic differentiation in the MSCs as seen by ALP secretion and increased RUNX2, collagen I and osteocalcin transcription. Sustainably grown coral was successfully incorporated into bioinks, reproducibly 3D printed, non-destructively monitored throughout culture and induced osteogenic differentiation in MSCs. This HT fabrication and monitoring workflow offers a faster, less labour-intensive system for the translation of bone substitute materials to clinic. Acknowledgements: This work was co-funded by Enterprise Ireland and Zoan Biomed through Innovation Partnership IP20221024


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 52 - 52
1 Dec 2018
Ferguson J Athanasou N McNally M
Full Access

Aim. This study describes the histologic changes seen with a gentamicin-eluting synthetic bone graft substitute (BGS)(1) in managing bone defects after resection of chronic osteomyelitis (cOM). Method. 154 patients with mean follow-up of 21.8 months (12–56) underwent treatment of cOM with an antibiotic-loaded BGS for defect filling. Nine patients had subsequent surgery, not related to infection recurrence, allowing biopsy of the implanted material. These biopsies were harvested between 19 days and two years after implantation, allowing a description of the material's remodelling over time. Samples were fixed in formalin and stained with haematoxylin-eosin. Immunohistochemistry, using an indirect immunoperoxidase technique, identified the osteocyte markers Dentine Matrix Protein-1 (DMP-1) and Podoplanin, the macrophage/osteoclast marker CD68, and the macrophage marker CD14. Results. The material was actively remodelled and was osteoconductive. There was evidence of osteoblast recruitment, leading to osteoid and intramembranous formation of woven and lamellar bone on the material's surface, seen most prominently in areas of well-vascularised fibrous tissue. Osteocytes in woven bone expressed the markers DMP-1 and Podoplanin. No cartilage or endochondral ossification was seen. There was a prominent (CD14+/ CD68+) macrophage response to the BSG and macrophages within reparative cellular and collagenous fibrous tissue. In biopsies taken between 4 and 5 months, there were bone trabeculae containing BGS of mainly woven but partly lamellar type. Giant cells on the surface of newly formed mineralised osteoid and woven bone expressed an osteoclast phenotype (CD68+/CD14-). In later biopsies (up to 2 years), larger bone trabeculae were seen more frequently within well-vascularised reparative fibrous tissue. The BGS was replaced with predominantly lamellar bone. One biopsy was taken from an extraosseous leak of BGS into the soft tissues, behind the distal tibia. The histology showed a heavy macrophage infiltrate, but notably no evidence of osteoid or bone formation in the material or surrounding soft tissues. Conclusion. There was clear evidence that this BGS is osteoconductive with first osteoid then woven and lamellar bone being formed. DMP-1 and podoplanin-expressing osteocytes present in woven and lamellar bone demonstrate osteoclastic bone remodelling. Increased lamellar bone was noted in later samples and bone formation was most prominent in well-vascularised areas. There was on-going remodelling of the material beyond one year. The BGS did not ossify in soft tissue. The hydroxyapatite scaffold in this material is probably responsible for its high osteoconductivity and potential to be transformed into bone


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 38 - 38
1 Dec 2016
Papadia D Musetti A Bertoldi L
Full Access

Aim. Open fractures with bone loss and skin lesions carry a high risk of infection and complication. Treatment options are usually a two-stage approach (debridement, temporary stabilization with external fixation followed by open reduction and stabilization with plate). We describe an experience for a single stage procedure with an antibiotic eluting bone graft substitute (BGS) for prophylaxis of implant-related infection. Method. Between December 2014 and January 2016 were analysed the data of twenty-six patients with open fractures (Gustilo and Anderson grade I and II) or with skin lesion and high risk of contamination and bone loss. They where treated with debridement of soft tissue, closed reduction of fracture, placement of a plate augmented with BGS eluting antibiotic (gentamicin (1) and/or Vancomicin (2)). Ampicillin and sulbactam 3g three times daily was used as systemic antibiotic prophylaxis minimum for one week. Clinical outcome and radiographic bone defect filling were assessed by blinded observers. Results. From 2014 to 2015 twelve male and fourteen female with mean age 53yrs (24–77) were treated with plate and BGS. Fracture locations were four distal femur (m:4; f: 1), four tibial plateau (m:3; f:1), one proximal humerus (f:1), seven calcaneus (m:4; f: 3), one talus (m:1), four forearm (m:3), one elbow (f:1) and two phalanx (m: 2). Follow up was fourteen month (range: 3 – 26 months). During follow-up no implant-related infection was observed. One patient developed sterile seroma, which was treated conservatively. The calcium sulphate phase of BS dissolved in all cases within 4–6 weeks. Bone ingrowth was assessed at 1, 2, 3, 6 and 12 months. On six patients large bone was treated with a revision surgery (autologous cancellous bone graft combined with BGS and antibiotic. No complications were reported. Conclusions. We suggest the application of poly therapy for the treatment of bone defects. BGS eluting antibiotic is easy to use and offers the opportunity for a one-stage procedure and might reduce the risk of implanted-related infection and allow early joint mobilization. Good early clinical outcomes were observed in almost all cases. More studies and larger series are necessary to confirm the potential for the prophylaxis of infection in the treatment of open fractures. (1): CERAMENT™|G. (2): CERAMENT™|V”


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 48 - 48
1 Dec 2013
Detsch R Fey T Greil P Chen Q Boccaccini AR
Full Access

Biomaterials used in regenerative medicine should be able to support and promote the growth and repair of natural tissues. Bioactive glasses (BGs) have a great potential for applications in bone tissue engineering [1, 2]. As it is well known BGs can bond to host bone and stimulate bone cells toward osteogenesis. Silicate BGs, e.g. 45S5 Bioglass® (composition in wt.%: 45 SiO. 2. , 6 P. 2. O. 5. , 24, 5 Na. 2. O and 24.5 CaO), exhibit positive characteristics for bone engineering applications considering that reactions on the material surface induce the release of critical concentrations of soluble Si, Ca, P and Na ions, which can lead to the up regulation of different genes in osteoblastic cells, which in turn promote rapid bone formation. BGs are also increasingly investigated for their angiogenic properties. This presentation is focused on cell behavior of osteoblast-like cells and osteoclast-like cells on BGs with varying sample geometry (including dense discs for material evaluation and coatings of highly porous Al. 2. O. 3. -scaffolds as an example of load-bearing implants). To obtain mechanically competent porous samples with trabecular architecture analogous to those of cancellous bone, in this study Al. 2. O. 3. scaffolds were fabricated by the well-known foam replication method and coated with Bioglass® by dip coating. The resulted geometry and porosity were proven by SEM and μCT. Originating from peripheral blood mononuclear cells formed multinucleated giant cells, i.e. osteoclast-like cells, after 3 weeks of stimulation with RANKL and M-CSF. Thus, the bioactive glass surface can be considered a promising material for bone healing, providing a surface for bone remodeling. Osteoblast-like cells and bone marrow stromal cells were seeded on dense bioactive glass substrates and coatings showing an initial inhibited cell attachment but later a strong osteogenic differentiation. Additionally, cell attachment and differentiation studies were carried out by staining cytoskeleton and measuring specific alkaline phosphatase activity. In this context, 45S5 bioactive glass surfaces can be considered a highly promising material for bone tissue regeneration, providing very fast kinetics for bone-like hydroxyapatite formation (mineralization). Our examinations revealed good results in vitro for cell seeding efficacy, cell attachment, viability, proliferation and cell penetration onto dense and porous Bioglass®-coated scaffolds. Recent in vivo investigations [3] have revealed also the angiogenic potential of bioactive glass both in particulate form and as 3D scaffolds confirming the high potential of BGs for bone regeneration strategies at different scales. Implant surfaces based on bioactive glasses offer new opportunities to develop these advanced biomaterials for the next generation of implantable devices and tissue scaffolds with desired tissue-implant interaction


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 14 - 14
14 Nov 2024
Gögele CL Fleischmann N Müller S Liesenberg T Pizzadili G Wiltzsch S Gerdes T Schaefer-Eckart K Lenhart A Schulze-Tanzil G
Full Access

Introduction. Articular cartilage has a low self-regeneration capacity. Cartilage defects have to be treated to minimize the risk of the onset of osteoarthritis. Bioactive glass (BG) is a promising source for cartilage tissue engineering. Until now, conventional BGs (like BG1393) have been used, mostly for bone regeneration, as they are able to form a hydroxyapatite layer and are therefore, less suited for cartilage reconstruction. The aim of this study is to study the effect of 3D printed hydrogel scaffolds supplemented with spheres of the BG CAR12N to improve the chondrogenesis of mesenchymal stem cells (MSCs). Method. Based on our new glass composition (CAR12N), small BG spheres (25-40 µm) were produced and mixed with hydrogel and primary human (h) MSCs. Grid printed scaffolds were cultivated up to 21 days in expansion or chondrogenic differentiation medium. Macroscopical images of the scaffolds were taken to observe surface changes. Vitality, DNA and sulfated glycosaminoglycan (GAG) content was semiquantitatively measured as well as extracellular matrix gene transcription. Result. It was possible to print grid shaped hydrogel scaffolds with BG spheres and hMSCs. No significant changes in scaffold shape, surface or pore size were detected after 21 days in culture. The BG spheres were homogeneously distributed inside the grids. Vitality was significantly higher in grids with CAR12N spheres in comparison to those without. The DNA content remained constant over three weeks, but was higher in the sphere containing scaffolds than in those without BG spheres. GAG content in the grids increased not only with additional cultivation time but especially in grids with BG spheres in chondrogenic medium. Aggrecan and type II collagen gene expression was significantly higher grids cultured in the chondrogenic differentiation medium. Conclusion. This developed 3D model, is very interesting to study the effect of BG on hMSCs and to understand the influence of leaking ions on chondrogenesis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 3 - 3
22 Nov 2024
Samuel BJ Horbert V Jin Z Brauer DS Matziolis G
Full Access

Aim. Biomaterial-associated infections (BAI) present a formidable clinical challenge. Bioactive glasses (BG) have proven highly successful in diverse clinical applications, especially in dentistry and orthopaedics. In this study, we aimed to determine the effect of three commonly used BG composition and particle sizes on cell and bacterial attachment and growth. Our focus is on understanding the changes in pH and osmotic pressure in the surrounding environment during glass degradation. Method. First, three different melt-derived glasses were characterized by analyzing particle size and glass network structure using Raman and NMR. The different glasses were then tested in vitro by seeding 4x 10. 4. cells/well (SaOS Cell line) in a 48 well plate. After a pre-incubation period of 72 hours, the different BGs and particle sizes were added to the cells and the pH value, ion release and live/dead staining was measured every hour. The effect of BG against bacteria (S. epidermidis) was analyzed after 24 and 72 hours of treatment by using XTT viability assay and CFU counting by plating out the treated aliquot agar to estimate the viable bacteria cells. Results. All three BG compositions tested showed a significant increase in pH, which was highest in BG composition 45S5 with a value of 11 compared to the other BG compositions 10 and 9 in S53P4 and 13-93 respectively. This strong increase in the pH in all BG samples tested results in a strongly reduced cell viability rate of more than 75% compared to the untreated control and 6-fold reduction in bacterial viability compared to the untreated control. The live/ dead assay also showed an increased cell viability with increasing glass particle size (i. e smallest glass particle < 25% viable cell and largest glass particle> 65% viable cell). The ion release concentration over 50 h showed an increase in sodium ions to 0.25 mol/L, calcium to 0.003 mol/L and a decrease in phosphorus. Conclusions. These results show that the composition of the bioactive glass and the choice of particle size have a major influence on subsequent applications. In addition to the different compositions of the BG, particle size and additional medium change also influence the pH and ion release, and therefore also on cells or bacteria viability. The sizes of the bioactive glass particle are inversely proportional to it. Further tests are necessary to develop custom design BG compositions, which simultaneously stimulate osteoblasts proliferation and prevent microbial adhesion


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 24 - 24
1 Mar 2012
Dahabreh Z Howard M Campbell P Giannoudis P
Full Access

Aim. To compare a variety of commercially available bone graft substitutes (BGS) in terms of promoting adherence, proliferation and differentiation of osteoprogenitor cells. Materials and methods. A fixed number of porcine mononuclear cells obtained from cancellous bone of the proximal femur was mixed with a standard volume of BGS and then cultured for one week in media followed by two weeks in osteogenic media. BGS included commercially available β-Tricalcium Phosphate (□-TCP), highly porous β-TCP, Hydroxyapatite/Tricalcium phosphate composite, calcium sulphate (CS), Hydroxyapatite (HA), Demineralised bone matrix (DBM), polygraft, and polymers (PGA, PLGA). Staining for live/dead cells as well as scanning electron microscopy (SEM) were carried out on all samples to determine viability and cellular binding. Further outcome measures included alkaline phosphatase assays with normalisation for DNA content to quantify osteogenic potential. Negative (BGS without cells) and positive (culture expanded osteoprogenitors) control experiments were carried out in parallel to validate the results. Results. Live/dead and SEM imaging showed higher cellular viability and attachment with β-TCP than with other BGS. In the experimental setup the average alkaline phosphatase activity in nmol/ml (normalised value for DNA content in nmol/μg DNA) per sample was 657.58 (132.03) for β-TCP, 36.22 (unable to normalise) for calcium sulphate, 19.93 (11.39) for the HA/ TCP composite, 14.79 (18.53) for polygraft, 13.98 (8.15) for the highly porous β-TCP, 5.56 (10.0) for PLGA, 3.82 (3.8) and for HA. It was not possible to analyse data for either DBM or PGA. Conclusion. Under theses experimental conditions, β-TCP has apparent favourable characteristics in terms of maintaining viability of osteoprogenitor cells and allowing proliferation and differentiation. Further work will be carried out to characterise the effect that BGS have on osteoprogenitor cells


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 4 | Pages 662 - 663
1 Jul 1996
Bostock SH Peach BGS


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 488 - 488
1 Sep 2012
Chan O Coathup M Hing K Buckland T Campion C Blunn G
Full Access

INTRODUCTION. Autologous bone grafts are considered gold standard in the repair of bone defects. However they are limited in supply and are associated with donor site morbidity. This has led to the development of synthetic bone graft substitute (BGS) materials, many of which have been reported as being osteoinductive. The structure of the BGS is important and bone formation has been observed in scaffolds with a macroporous morphology. Smaller pores termed ‘strut porosity’ may also be important for osteoinduction. The aim of this study was to compare the osteoinductive ability of one silicate-substituted calcium phosphate (SiCaP) with differing strut porosities in an ectopic ovine model. Our hypothesis was that SiCaP with greater strut porosity would be more osteoinductive. METHODS. The osteoinduction of SiCaP BGS with two different strut porosities (AF and AF++) was investigated. The materials had an identical chemical composition and morphological structure but differing strut porosity (AF=22.5%, AF++=47%). Implants were inserted into the paraspinal muscles in skeletally mature sheep. Procedures were carried out in compliance with UK Home Office regulations. There were 12 implants in each group. Implants remained in vivo for 8 and 12 weeks and on retrieval were prepared for undecalcified histology. Sections were stained and examined using light microscopy. A line intersection method was used to quantify bone, implant and implant surface/bone contact within seven random regions of interest along each implant. A Mann-Whitney U test was used for statistical analysis where p values < 0.05 were considered significant. RESULTS. Bone formation was observed to be greater in the AF++ group at 8 (AF=0.2%+/−0.15; AF++=0.44%+/−0.12) and significantly higher at 12 weeks (AF=1.33% +/−0.84; AF++=6.17%+/−1.51) (p=0.04). Significantly higher implant surface/bone contact was observed in the AF++ group at 8 (AF=0.67%+/−0.52; AF++=3.30%+/−1.17) (p=0.04) and 12 weeks (AF=3.06%+/−1.89; AF++=21.82%+/−5.59) (p=0.01). The % implant measured was less in the AF++ group at 8 (AF=39.06%+/−1.26; AF++=33.09%+/−2.14) and 12 weeks (AF=36.05% +/−3.55; AF++=30.60%+/−2.29) but this was not significant. Histology revealed bone formation within BGS strut pores measuring < 50um. Endochondral and intramembranous ossification were also observed in both groups. DISCUSSION. The results indicate that higher strut porosity promotes greater osteoinduction in SiCaP materials. This could be attributed to the micropores providing a greater surface area for the action of growth factors and osteoblasts leading to the formation of bone at an earlier time point. Endochondral ossification was an unusual finding as this is usually associated with bone formation secondary to Bone Morphogenetic proteins (BMPs). This suggests that the osteoinductive mechanisms by SiCaP may involve cytokines such as BMPs


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 30 - 30
1 Dec 2015
Papadia D Musetti A Dematte E
Full Access

Open fractures carry a high risk of infection. Our objective was to evaluate the effect of a resorbable bone substitute (BS) (calcium sulphate and hydroxyapatite) eluting Gentamicin (Cerament™| G) in the prevention of bone infection and nonunion after open fracture and/or skin lesion. The data of patients undergoing osteosynthesis augmented with BS and Gentamicin between December 2012 and April 2015 were retrospectively analyzed from a prospectively established database. Patients were treated for open fractures grade 1 Gustilo or skin lesion with high risk of contamination. Surgical technique included initial debridement, open reduction and internal fixation (ORIF), implantation of BS and Gentamicin, soft tissue closure, and systemic antibiotic therapy for 2 weeks in all cases. Clinical outcome and radiographic bone defect filling were assessed by blinded observers. From 12/2013 to 4/2015 nine male and six female with mean age 53yrs (24–77) were treated with ORIF and BS and Gentamicin for open fractures. Fracture locations were tibial plateau (two), tibia (two), proximal humerus (one), calcaneus (four), talus (one), forearm (three), and elbow (one) distal femur (one). at final follow-up (mean 11.1 months; range 7–13). One patient developed a sterile seroma, which was treated conservatively. No post-operative infection occurred during the follow-up period. The calcium sulphate phase of BGS dissolved within 4–6 weeks in all cases. Bone ingrowth was assessed at 1, 2, 3, 6 and 12 months and new bone formation was observed at 6 months. One patient with an exposed comminuted fracture and large bone defect showed poor bone regeneration and was treated with a revision surgery (exchange of plate, autologous cancellous bone graft combined with BGS and Gentamicin. No complications were reported. The use of this bone substitute is well documented in the literature. The new product containing 175 mg gentamicin in 10 ml shows a high release of gentamicin in in-vitro testing, comparable to the elution profile of PMMA beads that some authors suggested to use to reduce the risk of infection. However, the use of this antibiotic carrier in order to prevent bone infection after open fracture has not been studied yet. In this case series 15 patients have been treated and good early clinical outcomes were observed in almost all cases. This material is highly osteoconductive and has a potential for the prophylaxis of infection in the treatment of open fractures. Further investigations and larger series are necessary to show the prophylactic effect in detail


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 79 - 79
1 Feb 2020
Schierjott R Hettich G Ringkamp A Baxmann M Grupp T
Full Access

Introduction. Primary stability is an important factor for long-term implant survival in total hip arthroplasty. In revision surgery, implant fixation becomes especially challenging due the acetabular bone defects, which are often present. Previous studies on primary stability of revision components often applied simplified geometrical defect shapes in a variety of sizes and locations. The objectives of this study were to (1) develop a realistic defect model in terms of defect volume and shape based on a clinically existing acetabular bone defect, (2) develop a surrogate acetabular test model, and (3) exemplarily apply the developed approach by testing the primary stability of a pressfit-cup with and without bone graft substitute (BGS). Materials & Methods. Based on clinical computed tomography data and a method previously published [1], volume and shape information of a representative defect, chosen in consultation with four senior hip revision surgeons, was derived. Volume and shape of the representative defect was approximated by nine reaming procedures with hemispherical acetabular reamers, resulting in a simplified defect with comparable volume (18.9 ml original vs. 18.8 ml simplified) and shape. From this simplified defect (Defect D), three additional defect models (Defect A, B, C) were derived by excluding certain reaming procedures, resulting in four defect models to step-wise test different acetabular revision components. A surrogate acetabular model made of 20 PCF polyurethane foam with the main support structures was developed [2]. For the exemplary test, three series for Defect A were defined: Native (acetabulum without defect), Empty (defect acetabulum without filling), Filled (defect acetabulum with BGS filling). All series were treated with a pressfit-cup and subjected to dynamic axial load in direction of maximum resultant force during level walking. Minimum load was 300 N and maximum load was increased step-wise from 600 N to 3000 N. Total relative motion between cup and foam, consisting of inducible displacement and migration, was assessed with the optical measurement system gom Aramis (gom GmbH, Braunschweig, DE). Results. Total relative motion increased with increasing load, with a maximum of 0.63 mm for Native, 0.86 mm for Filled, and 1.9 mm for Empty. At load stage 1800 N, total relative motion in Empty was 11.0-fold increased in comparison to Native, but could be reduced to a 3.3-fold increase in Filled. Discussion. The objective of this study was to develop a simplified, yet realistic and modular defect model which could be used to step-wise test different treatment strategies. Applicability of the developed test setup was shown by assessing primary stability of a pressfit-cup in a native, empty, and filled situation. The presented method could potentially be used as a modular test setup to compare different acetabular revision components in a standardized way. For any figures or tables, please contact authors directly


Bone & Joint Open
Vol. 5, Issue 3 | Pages 236 - 242
22 Mar 2024
Guryel E McEwan J Qureshi AA Robertson A Ahluwalia R

Aims

Ankle fractures are common injuries and the third most common fragility fracture. In all, 40% of ankle fractures in the frail are open and represent a complex clinical scenario, with morbidity and mortality rates similar to hip fracture patients. They have a higher risk of complications, such as wound infections, malunion, hospital-acquired infections, pressure sores, veno-thromboembolic events, and significant sarcopaenia from prolonged bed rest.

Methods

A modified Delphi method was used and a group of experts with a vested interest in best practice were invited from the British Foot and Ankle Society (BOFAS), British Orthopaedic Association (BOA), Orthopaedic Trauma Society (OTS), British Association of Plastic & Reconstructive Surgeons (BAPRAS), British Geriatric Society (BGS), and the British Limb Reconstruction Society (BLRS).


Bone & Joint 360
Vol. 12, Issue 1 | Pages 30 - 33
1 Feb 2023

The February 2023 Shoulder & Elbow Roundup360 looks at: Arthroscopic capsular release or manipulation under anaesthesia for frozen shoulder?; Distal biceps repair through a single incision?; Distal biceps tendon ruptures: diagnostic strategy through physical examination; Postoperative multimodal opioid-sparing protocol vs standard opioid prescribing after knee or shoulder arthroscopy: a randomized clinical trial; Graft healing is more important than graft technique in massive rotator cuff tear; Subscapularis tenotomy versus peel after anatomic shoulder arthroplasty; Previous rotator cuff repair increases the risk of revision surgery for periprosthetic joint infection after reverse shoulder arthroplasty; Conservative versus operative treatment of acromial and scapular spine fractures following reverse total shoulder arthroplasty.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 73 - 73
1 Mar 2010
Butcher A Parsons P Ellis K Milner R Carter2 P Watson T Horner A
Full Access

Introduction: There is controversy regarding the effectiveness of PRC for bone healing. A possible explanation is the different bone graft substitutes (BGSs) used with PRC. Here we investigated the effect of combining different BGSs with PRC on hBMSCs differentiation and growth factor release from the BGS/PRC composites. Method: hBMSCs, DBM and allograft were prepared from femoral heads donated by patients undergoing total hip replacement. Growth factor release (TGF-â, VEGF, PDGF-AB, BMP-2) was measured by ELISA. The effect of PRC on hBMSC differentiation was determined by ALP activity and mineralisation. PRC was produced using the CAPTION device (S& N) from 10 healthy volunteers. Results: Combining PRC with BGSs increased hBMSC proliferation (p< 0.05) and decreased ALP activity (p< 0.05) compared to DBM or â-TCP (GenOS, S& N) alone, but had no effect on allograft following 3 and 5 days treatment. After 21 days PRC enhanced mineralisation compared to all BGSs alone (16%–56%). Compared to PRC alone addition of DBM and allograft increased proliferation (p< 0.05), decreased ALP activity (p< 0.005) and decreased mineralisation (p< 0.005). TGF-â, VEGF and BMP-2 release from PRC was unaffected when combined with DBM but PDGF-AB release was reduced by 50%. Conclusions: Combining PRC with the majority of BGSs enhanced cell proliferation and decreased osteoblastic differentiation at early time points but increased total mineralisation compared to the BGSs alone. However, compared to PRC alone combining DBM or allograft with PRC reduced mineralisation. One potential explanation for the effects of combining PRC with DBM is altered growth factor release profiles compared to the components alone


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 179 - 180
1 May 2011
Butt D Chana R Husain N Proctor B David L Slater G
Full Access

Aim: To assess the impact of a proforma pathway on the care of patients following fractured neck of femur at Maidstone General Hospital compared to the gold standard set out in the British Orthopaedic Association and British Geriatric Society Blue Book – The Care of Patients with a Fragility Fracture. Objectives: Initial audit of care prior to the introduction of the Proforma. Development of a multidisciplinary care pathway and proforma following BOA Standards for Trauma (BOAST) and National Hip Fracture Database (NHFD) guidelines. Re-audit of care following implementation of the proforma. Identification of areas for development to implement in the NHS (Institute for Innovation and Improvement) Rapid Improvement Program – Focus on Fractured Neck of Femur. Background: The recent publication of the BOA and BGS Blue Book guidelines for care of patients with fragility fractures has defined a gold standard for the care of these patients. This has highlighted the areas of care that are commonly suboptimal and defined the requirements of a department providing ideal care. Both this, and the introduction of the NHFD and the resultant requirements for data collection and monitoring led us to develop a proforma for management and data collection. Methods: An initial audit of care was performed. Notes were reviewed retrospectively for 62 patients and results were compared to the gold standard. In June 2008 the proforma was implemented and data collected for reaudit (n=48). Direct comparison and statistical analysis was performed for the two groups of patients. Results: Comparison of the two audit groups shows dramatic and highly statistically significant differences in a number of areas of patient care, notably: mortality rates; appropriate A& E investigation and treatment; documentation of correct diagnosis and social history; mental test scoring; time to ward admission; time to surgery and osteoporosis treatment. Discussion: The lack of a ring fenced, dedicated trauma ward leads to patients being admitted to outlying wards following fractured neck of femur. These wards are less likely to be as well equipped to deal with the unique requirements of these patients, which may explain the consistent problems with pressure area care and delay in discharge. A strong recommendation for gold standard care is the provision of an orthogeriatric service with regular medical review both pre- and post-operatively. Currently no such dedicated service exists at Maidstone and this affects both the treatment of acute medical problems and the provision of falls investigation and treatment. The introduction of the pathway has clearly benefitted the management of this difficult problem. With the support of the Rapid Improvement Program, further beneficial changes can be made to the care of patients following fractured NOF


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 11 - 11
1 Jan 2004
Hing K Damien E McInness T Revell P
Full Access

The use of porous ceramics as bone graft substitutes (BGS) has been under consideration for over 30 years [. 1. ]. In particular calcium phosphates such as hydroxyapatite (HA) have been promoted as a result of their osteoconductive properties, i.e. that they stimulate bone apposition within their macroporous structures. It is well established that both pore size [. 1. ] and pore connectivity [. 2. ] are critical morphological elements for a successful BGS. Thus biologically ‘optimal’ structures, with relatively large levels of porosity (> 70%) are consequently low in mechanical strength, with typical UCS values of between 1–8 MPa depending on the precise level of porosity and the pore size distribution. The aim of this investigation was to study the biological response to a porous HA with a relatively low level of macro-porosity (64%), but which possessed a highly interconnected micro-pore structure within the HA struts. Phase pure porous HA implants were manufactured using a novel technique [. 3. ] with a mean macro-pore size of 230 ìm and a mean pore interconnection size of 110 μm. Cylindrical specimens 4.5 mm in diameter were implanted in the distal femur of 6 month New Zealand White rabbits and retrieved for histological and histomorphometric analysis at 4 weeks. The mineral apposition rate (MAR) was determined through the administration of fluorochrome labels at 1, 2 and 3 weeks. After 4 weeks new bone had penetrated deep within the macro-pore structure and at high magnification osteocyte-like cells were observed occupying micro-pores within the ceramic struts. Furthermore, there was a significant increase in the MAR of bone formed within and surrounding the PHA (5.21 ìm.day-1, 4.42 ìm.day-1) as compared to the normal turnover rate of control bone (2.07 ìm.day-1, 2.09 ìm.day-1) during weeks 1-2 and 2–3, respectively. The micro-porous network within the scaffold struts clearly influenced the host response. This could be linked to an associated increase in roughness or surface area, or it may reflect the greater level of strut permeability underlining the importance of nutrient transfer and the promotion of angiogenesis in scaffolds for bone repair


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 1015 - 1023
1 Aug 2019
Metcalfe D Zogg CK Judge A Perry DC Gabbe B Willett K Costa ML

Aims

Hip fractures are associated with high morbidity, mortality, and costs. One strategy for improving outcomes is to incentivize hospitals to provide better quality of care. We aimed to determine whether a pay-for-performance initiative affected hip fracture outcomes in England by using Scotland, which did not participate in the scheme, as a control.

Materials and Methods

We undertook an interrupted time series study with data from all patients aged more than 60 years with a hip fracture in England (2000 to 2018) using the Hospital Episode Statistics Admitted Patient Care (HES APC) data set linked to national death registrations. Difference-in-differences (DID) analysis incorporating equivalent data from the Scottish Morbidity Record was used to control for secular trends. The outcomes were 30-day and 365-day mortality, 30-day re-admission, time to operation, and acute length of stay.