Rupture of the pectoralis major (PM) tendon is a rare yet severe injury. Several techniques have been described for PM fixation including a transosseus technique, when cortical buttons are placed at the superior, middle and inferior PM tendon insertion positions. The concern with this technique is the risk that bicortical drilling poses to the
Abstract. Objective. Radial to
Analysis of orthopaedic malpractice claims has shown that highest impact allegations (highest payment dollars per claim) were those that were related to failure to protect anatomic structures in surgical fields. The prevalence of subclinical peripheral neurologic deficit following reverse and anatomic shoulder arthroplasty has been reported to be 47% and 4%, respectively. We propose the following five rules in order to avoid neurovascular injury during shoulder arthroplasty cases:. Pre-operative planning would assure a smooth operation without intra-operative difficulties. Adequate planning would include appropriate imaging, obtaining previous operative reports, complete pre-operative neurovascular examination and requesting the necessary operative equipment. Tug test: It is crucial to palpate the
In reverse shoulder arthroplasty (RSA), a high complication rate is noted in the international literature (24.7%), and limited local literature is available. The complications in our developing health system, with high HIV, tuberculosis and metabolic syndrome prevalence may be different from that in developed health systems where the literature largely emanates from. The aim of this study is to describe the complications and complication rate following RSA in a South African cohort. An analytical, cross-sectional study was done where all patients’ who received RSA over an 11 year period at a tertiary hospital were evaluated. One-hundred-and-twenty-six primary RSA patients met the inclusion criteria and a detailed retrospective evaluation of their demographics, clinical variables and complication associated with their shoulder arthroplasty were assessed. All fracture, revision and tumour resection arthroplasties were excluded, and a minimum of 6 months follow up was required. A primary RSA complication rate of 19.0% (24/126) was noted, with the most complications occurring after 90 days at 54.2% (13/24). Instability was the predominant delayed complication at 61.5% (8/13) and sepsis being the most common in the early days at 45.5% (5/11). Haematoma formation, hardware failure and
A fracture of the tuberosity is associated with 16% of anterior glenohumeral dislocations. Manipulation of these injuries in the emergency department is safe with less than 1% risk of fracture propagation. However, there is a risk of associated neurological injury, recurrent instability and displacement of the greater tuberosity fragment. The risks and outcomes of these complications have not previously been reported. The purpose of this study was to establish the incidence and outcome of complications associated with this pattern of injury. We reviewed 339 consecutive glenohumeral dislocations with associated greater tuberosity fractures from a prospective trauma database. Documentation and radiographs were studied and the incidence of neurovascular compromise, greater tuberosity fragment migration and intervention and recurrent instability recorded. The mean age was 61 years (range, 18–96) with a female preponderance (140:199 male:female). At presentation 24% (n=78) patients had a nerve injury, with
The patterns of nerve and associated skeletal injury were reviewed in 84 patients referred to the brachial plexus service who had damage predominantly to the infraclavicular brachial plexus and its branches. Patients fell into four categories: 1. Anterior glenohumeral dislocation (46 cases); 2. ‘Occult’ shoulder dislocation or scapular fracture (17 cases); 3. Humeral neck fracture (11 cases); 4. Arm hyperextension (9 cases). The axillary (38/46) and ulnar (36/46) nerves were most commonly injured as a result of glenohumeral dislocation. The
The standard approach is through the deltopectoral interval. Among patients with prior incisions, one makes every effort to either utilise the old incision or to incorporate it into a longer incision that will allow one to approach the deltopectoral interval and retract the deltoid laterally. The deltopectoral interval is most easily developed just distal to the clavicle, where there is a natural infraclavicular triangle of fat that separates the deltoid and pectoralis major muscles even in very scarred or stiff shoulders. Typically, the deltoid is retracted laterally leaving the cephalic vein on the medial aspect of the exposure. The anterior border of the deltoid is mobilised from the clavicle to its insertion on the humerus. The anterior portion of the deltoid insertion together with the more distal periosteum of the humerus may be elevated slightly. The next step is to identify the plane between the conjoined tendon group and the subscapularis muscle. Dissection in this area must be done very carefully due to the close proximity of the neurovascular group, the
Treatment of proximal humerus fractures (PHF) is controversial in many respects, including the choice of surgical approach for fixation when using a locking plate. The classic deltopectoral (DP) approach is believed to increase the risk of avascular necrosis while making access to the greater tuberosity more difficult. The deltoid split (DS) approach was developed to respect minimally invasive surgery principles. The purpose of the present study (NCT-00612391) was to compare outcomes of PHF treated by DP and DS approaches in terms of function (Q-DASH, Constant score), quality of life (SF12), and complications in a prospective randomized multicenter study. From 2007 to 2016, all patients meeting the inclusion/exclusion criteria in two University Trauma Centers were invited to participate in the study. Inclusion criteria were: PHF Neer II/III, isolated injury, skeletal maturity, speaking French or English, available for follow-up (FU), and ability to fill questionnaires. Exclusion criteria: Pre-existing pathology to the limb, patient-refusing or too ill to undergo surgery, patient needing another type of treatment (nail, arthroplasty),
Latissimus dorsi anterior to major transfers have been advocated in the setting of loss of external rotation and elevation in conjunction with reverse shoulder replacement. Reverse shoulder replacement is a prosthesis specifically designed for shoulders with poor rotator cuff function. In the vast majority of cases, some teres minor function at the minimum is maintained in shoulders destined for a reverse shoulder replacement. However, in certain circumstances there is complete loss of any external rotation, and a muscle transfer can be performed in order to restore some external rotation function. A reverse shoulder replacement in the absence of any rotator cuff function goes into obligate internal rotation with elevation. A minimum of external rotation strength is necessary in order to maintain the arm in normal rotation. The first tip is patient selection. Physical examination of active external rotation, external rotation strength and forward elevation should be just performed. A latissimus transfer is indicated in patients who cannot maintain their arm in neutral to at least a few degrees of external rotation. A lag sign is another physical examination finding which can indicate complete loss of rotator cuff function. The latissimus dorsi transfer is performed by first identifying and releasing the latissimus from its insertion on the anterior humerus. The arthroplasty is performed. The passage for the latissimus muscle is developed carefully and being mindful of the
Reverse shoulder arthroplasty is becoming a frequent treatment of choice for patients with shoulder disorders. Complication rates after reverse shoulder arthroplasty may be three-fold that of conventional total shoulder arthroplasty especially in high risk patient populations and diagnoses like revision arthroplasty, fracture sequelae, and severe glenoid bone loss. Complications include component malposition, stiffness, neurological injury, infection, dislocation or instability, acromial or scapular spine fractures, scapular notching, and loosening of implants. Recognition of preoperative risk factors and appropriate 3D planning are essential in optimizing patient outcome and intraoperative success. Failure of reverse shoulder arthroplasty is a significant challenge requiring appropriate diagnosis of the failure mode. The most common neurological injuries involve the brachial plexus and the
Shoulder arthritis in the young adult is a deceptive title. The literature is filled with articles that separate outcomes based on an arbitrary age threshold and attempt to provide recommendations for management and even potential criteria for implanting one strategy over another using age as the primary determinant. However, under the age of 50, as few as one out of five patients will have arthritis that can be accurately classified as osteoarthritis. Other conditions such as post-traumatic arthritis, post-surgical arthritis including capsulorrhaphy arthropathy, and rheumatoid arthritis create a mosaic of pathologic bone and soft tissue changes in our younger patients that distort the conclusions regarding “shoulder arthritis” in the young adult. In addition, we are now seeing more patients with unique conditions that are still poorly understood, including arthritis of the pharmacologically performance-enhanced shoulder. Early arthritis in the young adult is often recognised at the time of arthroscopic surgery performed for other preoperative indications. Palliative treatment is the first option, which equals “debridement.” If the procedure fails to resolve the symptoms, and the symptoms can be localised to an intra-articular source, then additional treatment options may include a variety of cartilage restoration procedures that have been developed primarily for the knee and then subsequently used in the shoulder, including microfracture, and osteochondral grafting. The results of these treatments have been rarely reported with only case series and expert opinion to support their use. When arthritis is moderate or severe in young adults, non-arthroplasty interventions have included arthroscopic capsular release, debridement, acromioplasty, distal clavicle resection, microfracture, osteophyte debridement,
Optimal surgical management of proximal humeral fractures remains controversial. We report our experience and the study on our surgical technique for proximal humeral fractures and fracture-dislocations using locking plates in conjunction with calcium sulphate augmentation and tuberosity repair using high strength sutures. We used the extended deltoid-splitting approach for fracture patterns involving displacement of both lesser and greater tuberosities and for fracture-dislocations. We retrospectively analysed 22 proximal humeral fractures in 21 patients. 10 were male and 11 female with an average age of 64.6 years (Range 37 to 77). Average follow-up was 24 months. Fractures were classified according to Neer and Hertel systems. Pre-operative radiographs and CT scans in three and four-part fractures were done to assess the displacement and medial calcar length for predicting the humeral head vascularity. According to the Neer classification, there were 5 two-part, 6 three-part, 5 four-part fractures and 6 fracture-dislocations (2 anterior and 4 posterior). Results were assessed clinically with DASH scores, modified Constant & Murley scores and serial post-operative radiographs. The mean DASH score was 16.18 and modified Constant & Murley score was 64.04 at the last follow-up. 18 out of 22 cases achieved good clinical outcome. All the fractures united with no evidence of infection, failure of fixation, malunion, tuberosity failure, avascular necrosis or adverse reaction to calcium sulphate bone substitute. There was no evidence of
Our purpose was to study the functional outcome and electrophysiologically to assess the axially nerve function in patients who have undergone surgery using a deltoid-splitting approach to treat complex proximal humeral fractures. This was a prospective observational study and was carried out in the Shoulder injury clinic at a university teaching hospital. Over a one-year period we treated fourteen locally-resident patients (median age 59 years) who presented with a three- or four-part proximal humeral fracture. All patients were treated using the extended deltoid-splitting approach, with open reduction, bone grafting and plate osteosynthesis. All patients were prospectively reviewed and underwent functional testing using the DASH, Constant and SF-36 scores as well as spring balance testing of deltoid power, and dynamic muscle function testing. At one year after surgery, all patients underwent EMG and nerve latency studies to assess