Advertisement for orthosearch.org.uk
Results 1 - 20 of 110
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 488 - 492
1 Apr 2012
Vijayan S Bartlett W Bentley G Carrington RWJ Skinner JA Pollock RC Alorjani M Briggs TWR

Matrix-induced autologous chondrocyte implantation (MACI) is an established technique used to treat osteochondral lesions in the knee. For larger osteochondral lesions (> 5 cm2) deeper than approximately 8 mm we have combined the use of two MACI membranes with impaction grafting of the subchondral bone. We report our results of 14 patients who underwent the ‘bilayer collagen membrane’ technique (BCMT) with a mean follow-up of 5.2 years (2 to 8). There were 12 men and two women with a mean age of 23.6 years (16 to 40). The mean size of the defect was 7.2 cm2 (5.2 to 12 cm2) and were located on the medial (ten) or lateral (four) femoral condyles. The mean modified Cincinnati knee score improved from 45.1 (22 to 70) pre-operatively to 82.8 (34 to 98) at the most recent review (p < 0.05). The visual analogue pain score improved from 7.3 (4 to 10) to 1.7 (0 to 6) (p < 0.05). Twelve patients were considered to have a good or excellent clinical outcome. One graft failed at six years.

The BCMT resulted in excellent functional results and durable repair of large and deep osteochondral lesions without a high incidence of graft-related complications.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 723 - 738
4 Oct 2022
Liu Z Shen P Lu C Chou S Tien Y

Aims. Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Methods. Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67. phox. was involved in suramin-enhanced chondrocyte phenotype maintenance. Results. Suramin enhanced the COL2A1 and ACAN expression and lowered COL1A1 synthesis. Also, in 3D pellet culture GAG and COL2A1 production was significantly higher in pellets consisting of chondrocytes expanded with suramin compared to controls. Surprisingly, suramin also increased ROS generation, which is largely caused by enhanced NOX (p67. phox. ) activity and membrane translocation. Overexpression of p67. phox. but not p67. phox. AD (deleting amino acid (a.a) 199 to 212) mutant, which does not support ROS production in chondrocytes, significantly enhanced chondrocyte phenotype maintenance, SOX9 expression, and AKT (S473) phosphorylation. Knockdown of p67. phox. with its specific short hairpin (sh) RNA (shRNA) abolished the suramin-induced effects. Moreover, when these cells were treated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) inhibitor LY294002 or shRNA of AKT1, p67. phox. -induced COL2A1 and ACAN expression was significantly inhibited. Conclusion. Suramin could redifferentiate dedifferentiated chondrocytes dependent on p67. phox. activation, which is mediated by the PI3K/AKT/SOX9 signalling pathway. Cite this article: Bone Joint Res 2022;11(10):723–738


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 504 - 509
1 Apr 2012
Bentley G Biant LC Vijayan S Macmull S Skinner JA Carrington RWJ

Autologous chondrocyte implantation (ACI) and mosaicplasty are methods of treating symptomatic articular cartilage defects in the knee. This study represents the first long-term randomised comparison of the two techniques in 100 patients at a minimum follow-up of ten years. The mean age of the patients at the time of surgery was 31.3 years (16 to 49); the mean duration of symptoms pre-operatively was 7.2 years (9 months to 20 years). The lesions were large with the mean size for the ACI group being 440.9 mm. 2 . (100 to 1050) and the mosaicplasty group being 399.6 mm. 2. (100 to 2000). Patients had a mean of 1.5 previous operations (0 to 4) to the articular cartilage defect. Patients were assessed using the modified Cincinnati knee score and the Stanmore-Bentley Functional Rating system. The number of patients whose repair had failed at ten years was ten of 58 (17%) in the ACI group and 23 of 42 (55%) in the mosaicplasty group (p < 0.001). The functional outcome of those patients with a surviving graft was significantly better in patients who underwent ACI compared with mosaicplasty (p = 0.02)


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 141 - 146
1 Nov 2012
Minas T

Hyaline articular cartilage has been known to be a troublesome tissue to repair once damaged. Since the introduction of autologous chondrocyte implantation (ACI) in 1994, a renewed interest in the field of cartilage repair with new repair techniques and the hope for products that are regenerative have blossomed. This article reviews the basic science structure and function of articular cartilage, and techniques that are presently available to effect repair and their expected outcomes


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 36 - 36
1 Jul 2022
Smith L Jakubiec A Biant L Tawy G
Full Access

Abstract. Introduction. Autologous chondrocyte implantation (ACI) is a common procedure, primarily performed in active, young patients to treat knee pain and functional limitations resulting from cartilage injury. Nevertheless, the functional outcomes of ACI remain poorly understood. Thus, the aim of this systematic review was to evaluate the biomechanical outcomes of ACI. Methodology. Ovid MEDLINE, Embase, and Web of Science were systematically searched using the terms ‘Knee OR Knee joint AND Autologous chondrocyte implantation OR ACI’. Strict inclusion and exclusion criteria were used to screen publications by title, abstract, and full text. Study quality and bias were assessed by two reviewers. PROSPERO ID: CRD42021238768. Results. 28 articles including 35 ACI cohorts were included in this review. The average range of motion (ROM) was found to improve with clinical significance (>5˚) and statistical significance (p < 0.05) postoperatively: 133.9 ± 5.5˚ to 139.2 ± 4.9˚ (n=12). Knee strength significantly improved within the first two postoperative years, but remained poorer than control groups at final follow-up (n=17). No statistical differences were found between ACI and control groups in their ability to perform functional activities like the 6-minute walk test. However, peak external knee extension and adduction moments during gait were significantly poorer in ACI patients when compared to controls. Conclusion. Generally, functional outcomes improved with clinical and statistical significance following ACI. However, knee strengths and external knee moments during gait remain significantly poorer than healthy controls, particularly >2-years postoperatively. Thus, ACI patients likely require targeted strength training as part of their rehabilitation programme


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 179 - 183
1 Feb 2005
Whittaker J Smith G Makwana N Roberts S Harrison PE Laing P Richardson JB

Autologous chondrocyte implantation (ACI) has been used most commonly as a treatment for cartilage defects in the knee and there are few studies of its use in other joints. We describe ten patients with an osteochondral lesion of the talus who underwent ACI using cartilage taken from the knee and were prospectively reviewed with a mean follow-up of 23 months. In nine patients the satisfaction score was ‘pleased’ or ‘extremely pleased’, which was sustained at four years. The mean Mazur ankle score increased by 23 points at a mean follow-up of 23 months. The Lysholm knee score returned to the pre-operative level at one year in three patients, with the remaining seven showing a reduction of 15% at 12 months, suggesting donor-site morbidity. Nine patients underwent arthroscopic examination at one year and all were shown to have filled defects and stable cartilage. Biopsies taken from graft sites showed mostly fibrocartilage with some hyaline cartilage. The short-term results of ACI for osteochondral lesions of the talus are good despite some morbidity at the donor site


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 330 - 332
1 Mar 2005
Bartlett W Gooding CR Carrington RWJ Skinner JA Briggs TWR Bentley G

Autologous chondrocyte implantation (ACI) is a technique used for the treatment of symptomatic osteochondral defects of the knee. A variation of the original periosteum membrane technique is the matrix-induced autologous chondrocyte implantation (MACI) technique. The MACI membrane consists of a porcine type-I/III collagen bilayer seeded with chondrocytes. Osteochondral defects deeper than 8 to 10 mm usually require bone grafting either before or at the time of transplantation of cartilage. We have used a variation of Peterson’s ACI-periosteum sandwich technique using two MACI membranes with bone graft which avoids periosteal harvesting. The procedure is suture-free and requires less operating time and surgical exposure. We performed this MACI-sandwich technique on eight patients, five of whom were assessed at six months and one year post-operatively using the modified Cincinnati knee, the Stanmore functional rating and the visual analogue pain scores. All patients improved within six months with further improvement at one year. The clinical outcome was good or excellent in four after six months and one year. No significant graft-associated complications were observed. Our early results of the MACI-sandwich technique are encouraging although larger medium-term studies are required before there is widespread adoption of the technique


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 730 - 735
1 May 2005
Sharpe JR Ahmed SU Fleetcroft JP Martin R

In this study a combination of autologous chondrocyte implantation (ACI) and the osteochondral autograft transfer system (OATS) was used and evaluated as a treatment option for the repair of large areas of degenerative articular cartilage. We present the results at three years post-operatively. Osteochondral cores were used to restore the contour of articular cartilage in 13 patients with large lesions of the lateral femoral condyle (n = 5), medial femoral condyle (n = 7) and patella (n = 1). Autologous cultured chondrocytes were injected underneath a periosteal patch covering the cores. After one year, the patients had a significant improvement in their symptoms and after three years this level of improvement was maintained in ten of the 13 patients. Arthroscopic examination revealed that the osteochondral cores became well integrated with the surrounding cartilage. We conclude that the hybrid ACI/OATS technique provides a promising surgical approach for the treatment of patients with large degenerative osteochondral defects


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 128 - 134
1 Jan 2005
Goldberg AJ Lee DA Bader DL Bentley G

An increasing number of patients are treated by autologous chondrocyte implantation (ACI). This study tests the hypothesis that culture within a defined chondrogenic medium containing TGF-β enhances the reexpression of a chondrocytic phenotype and the subsequent production of cartilaginous extracellular matrix by human chondrocytes used in ACI. Chondrocytes surplus to clinical requirements for ACI from 24 patients were pelleted and cultured in either DMEM (Dulbecco’s modified eagles medium)/ITS+Premix/TGF-β1 or DMEM/10%FCS (fetal calf serum) and were subsequently analysed biochemically and morphologically. Pellets cultured in DMEM/ITS+/TGF-β1 stained positively for type-II collagen, while those maintained in DMEM/10%FCS expressed type-I collagen. The pellets cultured in DMEM/ITS+/TGF-β1 were larger and contained significantly greater amounts of DNA and glycosaminoglycans. This study suggests that the use of a defined medium containing TGF-β is necessary to induce the re-expression of a differentiated chondrocytic phenotype and the subsequent stimulation of glycosaminoglycan and type-II collagen production by human monolayer expanded chondrocytes


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 602 - 608
1 Apr 2010
Drobnič M Radosavljevič D Cör A Brittberg M Stražar K

We compared the quality of debridement of chondral lesions performed by four arthroscopic (SH, shaver; CU, curette; SHCU, shaver and curette; BP, bipolar electrodes) and one open technique (OPEN, scalpel and curette) which are used prior to autologous chondrocyte implantation (ACI). The ex vivo simulation of all five techniques was carried out on six juvenile equine stifle joints. The OPEN, SH and SHCU techniques were tested on knees harvested from six adult human cadavers. The most vertical walls with the least adjacent damage to cartilage were obtained with the OPEN technique. The CU and SHCU methods gave inferior, but still acceptable results whereas the SH technique alone resulted in a crater-like defect and the BP method undermined the cartilage wall. The subchondral bone was severely violated in all the equine samples which might have been peculiar to this model. The predominant depth of the debridement in the adult human samples was at the level of the calcified cartilage. Some minor penetrations of the subchondral end-plate were induced regardless of the instrumentation used. Our study suggests that not all routine arthroscopic instruments are suitable for the preparation of a defect for ACI. We have shown that the preferred debridement technique is either open or arthroscopically-assisted manual curettage. The use of juvenile equine stifles was not appropriate for the study of the cartilage-subchondral bone interface


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 640 - 645
1 May 2005
Bartlett W Skinner JA Gooding CR Carrington RWJ Flanagan AM Briggs TWR Bentley G

Autologous chondrocyte implantation (ACI) is used widely as a treatment for symptomatic chondral and osteochondral defects of the knee. Variations of the original periosteum-cover technique include the use of porcine-derived type I/type III collagen as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) using a collagen bilayer seeded with chondrocytes. We have performed a prospective, randomised comparison of ACI-C and MACI for the treatment of symptomatic chondral defects of the knee in 91 patients, of whom 44 received ACI-C and 47 MACI grafts. Both treatments resulted in improvement of the clinical score after one year. The mean modified Cincinnati knee score increased by 17.6 in the ACI-C group and 19.6 in the MACI group (p = 0.32). Arthroscopic assessments performed after one year showed a good to excellent International Cartilage Repair Society score in 79.2% of ACI-C and 66.6% of MACI grafts. Hyaline-like cartilage or hyaline-like cartilage with fibrocartilage was found in the biopsies of 43.9% of the ACI-C and 36.4% of the MACI grafts after one year. The rate of hypertrophy of the graft was 9% (4 of 44) in the ACI-C group and 6% (3 of 47) in the MACI group. The frequency of re-operation was 9% in each group. We conclude that the clinical, arthroscopic and histological outcomes are comparable for both ACI-C and MACI. While MACI is technically attractive, further long-term studies are required before the technique is widely adopted


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 71 - 71
1 Mar 2021
Pattappa G Krueckel J Johnstone B Docheva D Zellner J Angele P
Full Access

Osteoarthritis (OA) is a progressive and degenerative joint disease resulting in changes to articular cartilage. In focal early OA defects, autologous chondrocyte implantation (ACI) has a 2-fold failure rate due to poor graft integration and presence of inflammatory factors (e.g. Interleukin-1β). Bone marrow derived mesenchymal stem cells (MSCs) are an alternative cell source for cell-based treatments due to their chondrogenic capacity, though in vivo implantation leads to bone formation. In vivo, chondrocytes reside under an oxygen tension between 2–7% oxygen or physioxia. Physioxia enhances MSC chondrogenesis with reduced hypertrophic marker (collagen X and MMP13) expression compared to hyperoxic conditions (20% oxygen). This study sought to understand whether implantation of physioxic preconditioned MSCs improves cartilage regeneration in an early OA defect model compared to hyperoxic MSCs. Bone marrow extracted from New Zealand white rabbits (male: 5–6 months old; n = 6) was split equally for expansion under 2% (physioxia) or 20% (hyperoxia) oxygen. Chondrogenic pellets (2 × 105 cells/pellet) formed at passage 1 were cultured in the presence of TGF-β1 under their expansion conditions and measured for their wet weight and GAG content after 21 days. During bone marrow extraction, a dental drill (2.5mm diameter) was applied to medial femoral condyle on both the right and left knee and left untreated for 6 weeks. Following this period, physioxia and hyperoxia preconditioned MSCs were seeded into a hyaluronic acid (TETEC) hydrogel. Fibrous tissue was scraped and then MSC-hydrogel was injected into the right (hyperoxic MSCs) and left (physioxia MSCs) knee. Additional control rabbits with drilled defects had fibrous tissue scrapped and then left untreated without MSC-hydrogel treatment for the duration of the experiment. Rabbits were sacrificed at 6 (n = 3) and 12 (n = 3) weeks post-treatment, condyles harvested, decalcified in 10% EDTA and sectioned using a cryostat. Region of interest was identified; sections stained with Safranin-O/Fast green and evaluated for cartilage regeneration using the Sellers scoring system by three blinded observers. Physioxic culture of rabbit MSCs showed significantly shorter doubling time and greater cell numbers compared to hyperoxic culture (∗p < 0.05). Furthermore, physioxia enhanced MSC chondrogenesis via significant increases in pellet wet weight and GAG content (∗p < 0.05). Implantation of physioxic preconditioned MSCs showed significantly improved cartilage regeneration (Mean Sellers score = 7 ± 3; ∗p < 0.05) compared to hyperoxic MSCs (Sellers score = 12 ± 2) and empty defects (Sellers score = 17 ± 3). Physioxia enhances in vitro rabbit MSC chondrogenesis. Subsequent in vivo implantation of physioxia preconditioned MSCs improved cartilage regeneration in an early OA defect model compared to hyperoxic MSCs. Future studies will investigate the mechanisms for enhanced in vivo regeneration using physioxia preconditioned MSCs


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_3 | Pages 17 - 17
1 Apr 2019
Kurian NM Shetty AA Kim SJ Shetty V Ahmed S Trattnig S
Full Access

Gel-based autologous chondrocyte implantation (ACI) over the years have shown encouraging results in repairing the articular cartilage. More recently, the use of cultured mesenchymal stem cells (MSC) has represented a promising treatment option with the potential to differentiate and restore the hyaline cartilage in a more efficient way. This study aims to compare the clinical and radiological outcome obtained in these two groups. Twenty-eight consecutive symptomatic patients diagnosed with full-thickness cartilage defects were assigned to two treatment groups (16 patients cultured bone marrow-derived MSC and 12 patients with gel-type ACI). The MSC group patients underwent microfracture and bone marrow aspiration in the first stage and injection of cultured MSC into the knee in the second stage. Clinical and radiological results were compared at a minimum follow up of five years. There was excellent clinical outcome noted with no statistically significant difference between the two groups. Both ACI and MSC group showed significant improvement of the KOOS, Lysholm and IKDC scores as compared to their preoperative values and this was maintained at 5 years follow up. The average MOCART score for all lesions was also nearly similar in the two groups. The mean T2* relaxation-times for the repair tissue and native cartilage were 27.8 and 30.6 respectively in the ACI group and 28 and 29.6 respectively in the MSC group. Use of cultured MSC is less invasive, technically simpler and also avoids the need for a second surgery as compared to an ACI technique. With similar encouraging clinical results seen and the proven ability to restore true hyaline cartilage, cultured MSC represent a favorable treatment option in articular cartilage repair


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 7 - 7
1 Nov 2015
Gobezie R
Full Access

Large osteochondral defects of the glenohumeral joint are difficult to treat in young, active patients. When initial non-operative treatment with physical therapy, non-steroidal anti-inflammatory medications, corticosteroid injections, and viscosupplementation fails, surgery may become an option for some patients. Traditional shoulder arthroplasty and hemiarthroplasty provide excellent function and pain relief that can be long-lasting, but these treatments are still very likely to fail during a young patient's lifetime, and results have been unsatisfactory in many younger patients. Microfracture and autologous chondrocyte implantation (ACI) have been used in the shoulder, but their use has been limited to small defects. Other techniques that incorporate soft-tissue coverage of larger osteochondral defects have the benefit of preserving bone, but have not provided consistently good results. Advanced surgical techniques have been developed including all-arthroscopic osteochondral graft resurfacing of the humerus and glenoid for the treatment of osteoarthritis. This method of ‘biological resurfacing’ of the joint without using prosthetic implants may offer potential benefits to these young patients with shoulder arthritis including faster rehabilitation, pain relief, and easier revision surgery, if necessary. Early outcomes are encouraging in many cases, but inconsistent overall, with pain relief being the most reliable indicator of patient satisfaction


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 67 - 67
1 May 2017
Bhattacharjee A McCarthy H Tins B Kuiper J Roberts S Richarson J
Full Access

Background. Structural and functional outcome of bone graft with first or second generation autologous chondrocyte implantation (ACI) in osteochondral defects has not been reported. Methods. Seventeen patients (mean age of 27±7 years, range 17–40), twelve with osteochondritis dissecans (OD) (ICRS Grade 3 and 4) and five with isolated osteochondral defect (OCD) (ICRS Grade 4) were treated with a combined implantation of a unicortical autologous bone graft with ACI (the Osplug technique). Functional outcome was assessed with Lysholm scores. The repair site was evaluated with the Oswestry Arthroscopy Score (OAS), MOCART score and ICRS II histology score. Formation of subchondral lamina and lateral integration of the bone grafts were evaluated from MRI scans. Results. The mean defect size was 4.5±2.6SD cm. 2. (range 1–9) and depth was 11.3±5SD mm (range 5–18). The pre-operative Lysholm score improved from 45 (IQR 24, range 16–79) to 77 (IQR 28, range 41–100) at 1 year (p-value 0.001) and 70 (IQR 35, range 33–91) at 5 years (p-value 0.009). The mean OAS of the repair site was 6.2 (range 0–9) at a mean of 1.3 years. The mean MOCART score was 61 ± 22SD (range 20–85) at 2.6 ± 1.8SD years. Histology demonstrated generally good integration of the repair cartilage with the underlying bone. Poor lateral integration of the bone graft on the MRI scan and a low OAS were significantly associated with a poor Lysholm score and failure. Conclusion. Osplug technique shows significant improvement of functional outcome for up to 5 years in patients with a high grade OD or OCD. This is the first report describing association of bone graft integration with functional outcome after such a procedure. It also demonstrates histological evidence of integration of the repair cartilage with the underlying bone graft. Level of Evidence. III


A prospective case control study analysed clinical and radiographic results in patients operated on with the periosteum autologous chondrocyte implantation (ACI) due to cartilage lesions on the femoral condyles over 10 years ago. 31 out of the 45 patients (3 failures, 9 non-responders, 2 others) were available for a continuous clinical (Lyshom/Tegner, IKDC, KOOS) and radiographic (Kellgren-Lawrence) follow-up at 0, 2, 5, and 10 years after the ACI procedure. The patients were sub-grouped into focal cartilage lesions (FL) – 10, osteochondritis dissecans (OCD) – 12, and cartilage lesions with simultaneous ACL reconstruction (ACL) – 9 subgroups. Lysholm, Tegner, and IKCD subjective scores revealed stable results over the period from 2 to 10 years with a significant improvement toward the pre-operative levels, but the patients had not reached their pre-injury Tegner levels. KOOS profile at 10 years was: Pain 78.6, Symptoms 78.1, Activities of daily living 82.5, Sports 56.9, and Quality of life 55.1. A 10-year IKDC knee examination classified operated knees as: 14 normal, 10 nearly normal, 5 abnormal and 2 severely abnormal. Kellgren-Lawrence scores of 2 and above were found in 10 patients (FL 5, OCD 0, and ACL 5). Seven patients in the group required an arthroscopic re-intervention (3 ACI related, 4 ACI unrelated). ACI provided safe and stable performance of operated knees over ten years. High incidence of knee osteoarthritis in FL and ACL subgroups, and low incidence in OCD patients indicate that best long performance is expected in localised low-impact cartilage lesions of young patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 15 - 15
1 Apr 2017
Timur U van der Windt A Caron M Welting T Emans P Jahr H
Full Access

Background. Treatment of cartilage defects requires in vitro expansion of human articular chondrocytes (HACs) for autologous chondrocyte implantation (ACI). During standard expansion culture (i.e. plasma osmolarity, 280 mOsm) chondrocytes inevitably lose their specific phenotype (i.e. collagen type II (COL2) expression). This de-differentiation makes them inappropriate for ACI. Physiological osmolarity (i.e. 380 mOsm) improves COL2 expression in vitro, but the underlying reason is unknown. However, an accepted key regulator of chondrocyte differentiation, transforming growth factor beta (TGFβ), is known to stimulate COL2 production. In this study we aimed to elucidate if TGFβ signaling could potentially be driving the COL2 expression under physiological culture conditions. Material and methods. After informed consent was obtained, HACs were isolated from five osteoarthritis (OA) patients and cultured in cytokine-free medium of 280 or 380 mOsm, respectively, under standard 2D in vitro conditions with or without lentiviral TGFβ2 knockdown (RNAi). Expression of TGFβ isoforms, superfamily receptors and chondrocyte marker genes was evaluated by qRT-PCR, TGFβ2 protein secretion by ELISA and TGFβ bioactivity using luciferase reporter assays. Statistical significance was assessed by a student's t-test. Results. TGFβ isoform expression was differentially altered by physiological osmolarity. Specifically, 380 mOsm increased TGFβ2 expression and protein secretion, as well as TGFβ activity. Upon TGFβ2 isoform-specific knockdown COL2 expression was induced. Physiological osmolarity and TGFβ2 RNAi also induced TGFβ1, TGFβ3 and their type I receptor ALK5. Conclusions. We showed that TGFβ2 knockdown increases COL2 expression in human osteoarthritic chondrocytes in vitro, possibly through a regulatory feedback loop involving TGFβ1, TGFβ3 induction and an increased ALK5/ALK1 ratio. This study indicates that TGFβ signalling is involved in osmolarity-induced chondrocyte marker gene expression. Pharmacological targeting of this pathway holds potential to further improve future osmolarity-mediated phenotypic stabilisation in advanced cell-based cartilage repair strategies. Level of Evidence. preclinical. Disclosure. We have nothing to disclose


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 73 - 73
1 Feb 2015
Minas T
Full Access

Cartilage is known to have limited intrinsic repair capabilities and cartilage defects can progress to osteoarthritis (OA). OA is a major economic burden of the 21st century, being among the leading causes of disability. The risk of disability from knee OA is as great as that derived from cardiovascular disease; a fact that becomes even more concerning when considering that even isolated cartilage defects can cause pain and disability comparable to that of severe OA. Several cartilage repair procedures are in current clinical application, including microfracture, osteochondral autograft transfer, osteochondral allograft transplantation, and autologous chondrocyte implantation (ACI). Given the economic challenges facing our health care system, it appears prudent to choose procedures that provide the most durable long-term outcome. Comparatively few studies have examined long-term outcomes, an important factor when considering the substantial differences in cost and morbidity among the various treatment options. This study reviews the clinical outcomes of autologous chondrocyte implantation at a minimum of 10 years after treatment of chondral defects of the knee. Mean age at surgery was 36 ± 9 years; mean defect size measured 8.4 ± 5.5cm2. Outcome scores were prospectively collected pre- and postoperatively at the last follow up. We further analyzed potential factors contributing to failure in hopes of refining the indications for this procedure. Conclusions: ACI provided durable outcomes with a survivorship of 71% at 10 years and improved function in 75% of patients with symptomatic cartilage defects of the knee at a minimum of 10 years after surgery. A history of prior marrow stimulation as well as the treatment of very large defects was associated with an increased risk of failure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 154 - 154
1 Feb 2012
Rogers B Jagiello J Carrington S Skinner J Briggs T
Full Access

Introduction. The treatment of distal femoral cartilage defects using autologous chondrocyte implantation (ACI) and matrix-guided autologous chondrocyte implantation (MACI) is become increasingly common. This prospective 7-year study reviews and compares the clinical outcome of ACI and MACI. Methods. We present the clinical outcomes of 159 knees (156 patients) that have undergone autologous chondrocyte implantation from July 1998. One surgeon performed all operations with patients subsequently assessed on a yearly basis using 7 independent validated clinical, functional and satisfaction rating scores. Results. Modified Cincinnati, Patient Functional Outcome and Lysholm & Gilchrist clinical rating scores all showed significant improvements compared to pre-operative levels (p<0.0001). Although ACI scores are superior at one year (p<0.05) there is no significant difference between ACI and MACI at 2 years. Visual Analogue Score and Bentley Functional rating score showed significant improvements compared to pre-operative levels (p<0.0001) with ongoing yearly sequential improvement. Patient Rating and Brittberg scores, both subjective patient scores, similarly showed continuing improvements in the years following surgery. Discussion. ACI and MACI produce significant improvements in knee function when compared to pre-operative levels with continued sequential improvement in outcomes for up to seven years. The initial data suggests a superior rate of clinical improvement using the MACI technique


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 472 - 472
1 Nov 2011
Macmull S Parratt M Bentley G Skinner J Carrington R Briggs T
Full Access

Autologous chondrocyte implantation (ACII) has been shown to have favourable results in the treatment of symptomatic chondral and osteochondral lesions. However, there are few reports on the outcomes of this technique in adolescents. The aim was to assess functional outcome and pain relief in adolescents undergoing autologous chondrocyte implantation (ACI). Thirty-one adolescent patients undergoing ACI or Matrix-assisted chondrocyte implantation (MACI) were identified from a larger prospective study. Mean age was 16.3 years (range 14 – 18) with a mean follow-up of 66.3 months (12–126 months). There were 22 males and nine females. All patients were symptomatic; 30 had isolated lesions and one had multiple lesions. Patients were assessed pre and postoperatively using the Visual Analogue Score (VAS), the Stanmore/Bentley Functional Rating Score and the Modified Cincinnati Rating System. The mean VAS improved from 5.8 pre-operatively to 2 post-operatively. The Stanmore/Bentley Functional Rating Score improved from 2.9 to 0.9 whilst the Modified Cincinnati Rating System improved from 49.8 pre-operatively to 81.3 postoperatively with 87% of patients achieving excellent or good results. All postoperative scores exhibited statistically significant improvement from pre-operative scores. The results show that, in this particular group of patients, this procedure produces reduction in pain and a statistically significant improvement in function postoperatively. We strongly recommend this procedure in the management of adolescents with symptomatic chondral defects