The clinical success of osteochondral autografts is heavily reliant on their mechanical stability, as grafts which protrude above or subside below the native cartilage can have a negative effect on the tribological properties of the joint [1]. Furthermore, high insertion forces have previously been shown to reduce chondrocyte viability [2]. Commercial grafting kits may include a dilation tool to increase the diameter of the recipient site prior to insertion. The aim of this study was to evaluate the influence of dilation on the primary stability of autografts. Six human cadaveric femurs were studied. For each femur, four 8.5 × 8mm autografts were harvested from the trochlear groove and implanted into the femoral condyles using a Smith & Nephew Osteochondral grafting kit. Two grafts were implanted into dilated recipient sites (n=12) and two were implanted with no dilation (n=12). Insertion force was measured by partially inserting the graft and applying a load at a rate of 1 mm/min, until the graft was flush with the surrounding cartilage. Push-in force was measured by applying the same load, until the graft had subsided 4mm below congruency. Significance was taken as (p<0.05). Average maximum insertion force of dilated grafts was significantly lower (p<0.001) than their non-dilated equivalent [28.2N & 176.7N respectively]. There was no significant difference between average maximum push-in force between the dilated and non-dilated groups [1062.8N & 1204.2N respectively]. This study demonstrated that significantly less force is required to insert dilated autografts, potentially minimising loss of chondrocyte viability. However, once inserted, the force required to displace the grafts below congruency remained similar, indicating a similar degree of graft stability between both groups.
The purpose of this investigation was to evaluate systematically the literature concerning biopsy, MRI signal to noise quotient (SNQ) and clinical outcomes in graft-maturity assessment after autograft anterior cruciate ligament reconstruction (ACLR) and their possible relationships. Methods: The systematic review was reported and conducted according to the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines. Studies through May 2019 evaluating methods of intra-articular ACL autograft maturity assessment were considered for inclusion. Eligible methods were histologic studies of biopsy specimens and conventional MRI studies reporting serial SNQ and/ or correlation with clinical parameters. Ten biopsy studies and 13 imaging studies, with a total of 706 patients, met the inclusion criteria. Biopsy studies show that graft remodeling undergoes an early healing phase, a phase of remodeling or proliferation and a ligamentization phase as an ongoing process even 1 year after surgery. Imaging studies showed an initial increase in SNQ, peaking at approximately 6 months, followed by a gradual decrease over time. There is no evident correlation between graft SNQ and knee stability outcome scores at the short- and long-term follow-up after ACLR. The remodeling of the graft is an ongoing process even 1 year after ACLR, based on human biopsy studies. MRI SNQ peaked at approximately 6 months, followed by a gradual decrease over time. Heterogeneity of the MRI methods and technical restrictions used in the current literature limit prediction of graft maturity and clinical and functional outcome measures by means of MRI graft SNQ after ACLR.
Augmentation of spinal fusion using bone grafts is largely mediated by the osteoinductive potential of mesenchymal stem cells (MSC) that reside in cancellous bone. Iliac crest (IC) is a common autograft, but its use presents an increased risk for donor-site pain, morbidity and infection. Degenerative facet joints (FJ) harvested during facetectomy might servce as alternative local grafts. In this study, we conducted an intra-individual comparison of the osteogenic potential of MSC from both sources. IC and degenerative FJ were harvested from 8 consecutive patients undergoing transforaminal lumbar interbody fusion surgery for spinal stenosis. MSC were isolated by collagenase digestion, selected by plastic adherence and minimally expanded for downstream assays. Clonogenic and osteogenic potential was evaluated by colony formation assays in control and osteogenic culture medium. Osteogenic properties, including alkaline phosphatase (ALP) induction, matrix mineralization and type I collagen mRNA and protein expression were characterized using quantitative histochemical staining and reverse transcription PCR. Spontaneous adipogenesis was analysed by adipocyte enumeration and gene expression analysis of adipogenic markers.Introduction
Methods
Bone defects and fractures, caused by injury, trauma or tumour resection require hospital treatment and temporary loss of mobility, representing an important burden for societies and health systems worldwide.
Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone mineralisation effectiveness of osteophytes and cancellous bone, including their effects on secretion of growth factors and anabolic effects on osteoblasts. Osteophytes and cancellous bone obtained from human patients were transplanted onto the calvaria of severe combined immunodeficient mice, with Calcein administered intra-peritoneally for fluorescent labelling of bone mineralisation. Conditioned media were prepared using osteophytes and cancellous bone, and growth factor concentration and effects of each graft on proliferation, differentiation and migration of osteoblastic cells were assessed using enzyme-linked immunosorbent assays, MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assays, quantitative real-time polymerase chain reaction, and migration assays.Objectives
Methods